ترغب بنشر مسار تعليمي؟ اضغط هنا

Neel-type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV$_4$S$_8$

148   0   0.0 ( 0 )
 نشر من قبل Istvan Kezsmarki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the early prediction of the skyrmion lattice (SkL) - a periodic array of spin vortices - it has been observed recently in various magnetic crystals mostly with chiral structure. Although non-chiral but polar crystals with C$_{nv}$ symmetry were identifed as ideal SkL hosts in pioneering theoretical studies this archetype of SkL has remained experimentally unexplored. Here, we report the discovery of a SkL in the polar magnetic semiconductor GaV$_4$S$_8$ with rhombohedral (C$_{3v}$) symmetry and easy axis anisotropy. The SkL exists over an unusually broad temperature range compared with other bulk crystals and the orientation of the vortices is not controlled by the external magnetic feld but instead confned to the magnetic easy axis. Supporting theory attributes these unique features to a new non-chiral or Neel-type of SkL describable as a superposition of spin cycloids in contrast to the Bloch-type SkL in chiral magnets described in terms of spin helices.



قيم البحث

اقرأ أيضاً

The orientation of Neel-type skyrmions in the lacunar spinels GaV$_4$S$_8$ and GaV$_4$Se$_8$ is tied to the polar axes of their underlying crystal structure through the Dzyaloshinskii-Moriya interaction. In these crystals, the skyrmion lattice phase exists for externally applied magnetic fields parallel to these axes and withstands oblique magnetic fields up to some critical angle. Here, we map out the stability of the skyrmion lattice phase in both crystals as a function of field angle and magnitude using dynamic cantilever magnetometry. The measured phase diagrams reproduce the major features predicted by a recent theoretical model, including a reentrant cycloidal phase in GaV$_4$Se$_8$. Nonetheless, we observe a greater robustness of the skyrmion phase to oblique fields, suggesting possible refinements to the model. Besides identifying transitions between the cycloidal, skyrmion lattice, and ferromagnetic states in the bulk, we measure additional anomalies in GaV$_4$Se$_8$ and assign them to magnetic states confined to polar structural domain walls.
Polar lacunar spinels, such as GaV$_4$S$_8$ and GaV$_4$Se$_8$, were proposed to host skyrmion phases under magnetic field. In this work, we put forward, as a candidate for Neel-type skyrmion lattice, the isostructural GaMo$_4$S$_8$, here systematical ly studied via both first-principles calculations and Monte Carlo simulations of model Hamiltonian. Electric polarization, driven by Jahn-Teller distortion, is predicted to arise in GaMo$_4$S$_8$, showing a comparable size but an opposite sign with respect to that evaluated in V-based counterparts and explained in terms of different electron counting arguments and resulting distortions. Interestingly, a larger spin-orbit coupling of 4d orbitals with respect to 3d orbitals in vanadium-spinels leads to stronger Dzyaloshinskii-Moriya interactions, which are beneficial to stabilize a cycloidal spin texture, as well as smaller-sized skyrmions (radius<10 nm). Furthermore, the possibly large exchange anisotropy of GaMo4S8 may lead to a ferroelectric-ferromagnetic ground state, as an alternative to the ferroelectric-skyrmionic one, calling for further experimental verification.
We report small-angle neutron scattering studies of the lacunar spinel GaV$_4$S$_8$, which reveal the long-wavelength magnetic states to be cycloidally modulated. This provides direct support for the formation of Neel-type skyrmions recently claimed to exist in this compound. In striking contrast with all other bulk skyrmion host materials, upon cooling the modulated magnetic states transform into a ferromagnetic state. These results indicate all of the modulated states in GaV$_4$S$_8$, including the skyrmion state, gain their stability from thermal fluctuations, while at lower temperature the ferromagnetic state emerges in accord with the strong easy-axis magnetic anisotropy. In the vicinity of the transition between the ferromagnetic and modulated states, both a phase coexistence and a soliton-like state are also evidenced by our study.
139 - Y. Okamura , S. Seki , S. Bordacs 2021
We have investigated the directional dichroism of magnetic resonance spectra in the polar ferromagnet GaV$_4$S$_8$. While four types of structural domains are energetically degenerated under zero field, the magnetic resonance for each domain is well separated by applying magnetic fields due to uniaxial magnetic anisotropy. Consequently, the directional dichroism as large as 20 % is clearly observed without domain cancellation. The present observation therefore demonstrates that not only magnetoelectric mono-domain crystals but also magnetoelectric multi-domain specimens can be used to realize microwave (optical) diodes owing to the lack of inversion domains.
We report the feasibility of using magnetoentropic mapping for the rapid identification of magnetic cycloid and skyrmion phases in uniaxial systems, based on the GaV4S8 and GaV4Se8 model skyrmion hosts with easy-axis and easy-plane anisotropies respe ctively. We show that these measurements can be interpreted with the help of a simple numerical model for the spin Hamiltonian to yield unambiguous assignments for both single phase regions and phase boundaries. In the two lacunar spinel chemistries, we obtain excellent agreement between the measured magnetoentropic features and a minimal spin Hamiltonian built on Heisenberg exchange, single-ion anisotropy, and anisotropic Dzyaloshinskii-Moriya interactions. In particular, we identify characteristic high-entropy behavior in the cycloid phase that serves as a precursor to the formation of skyrmions at elevated temperatures and is a readily-measurable signature of this phase transition. Our results demonstrate that rapid magnetoentropic mapping guided by numerical modeling is an effective means of understanding the complex magnetic phase diagrams innate to skyrmion hosts. One notable exception is the observation of an anomalous, low-temperature high-entropy state in the easy-plane system GaV$_4$Se$_8$, which is not captured in the numerical model. Possible origins of this state are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا