ترغب بنشر مسار تعليمي؟ اضغط هنا

Coding local and global binary visual features extracted from video sequences

125   0   0.0 ( 0 )
 نشر من قبل Luca Baroffio
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.



قيم البحث

اقرأ أيضاً

Distributed visual analysis applications, such as mobile visual search or Visual Sensor Networks (VSNs) require the transmission of visual content on a bandwidth-limited network, from a peripheral node to a processing unit. Traditionally, a Compress- Then-Analyze approach has been pursued, in which sensing nodes acquire and encode the pixel-level representation of the visual content, that is subsequently transmitted to a sink node in order to be processed. This approach might not represent the most effective solution, since several analysis applications leverage a compact representation of the content, thus resulting in an inefficient usage of network resources. Furthermore, coding artifacts might significantly impact the accuracy of the visual task at hand. To tackle such limitations, an orthogonal approach named Analyze-Then-Compress has been proposed. According to such a paradigm, sensing nodes are responsible for the extraction of visual features, that are encoded and transmitted to a sink node for further processing. In spite of improved task efficiency, such paradigm implies the central processing node not being able to reconstruct a pixel-level representation of the visual content. In this paper we propose an effective compromise between the two paradigms, namely Hybrid-Analyze-Then-Compress (HATC) that aims at jointly encoding visual content and local image features. Furthermore, we show how a target tradeoff between image quality and task accuracy might be achieved by accurately allocating the bitrate to either visual content or local features.
Ranking and recommendation of multimedia content such as videos is usually realized with respect to the relevance to a user query. However, for lecture videos and MOOCs (Massive Open Online Courses) it is not only required to retrieve relevant videos , but particularly to find lecture videos of high quality that facilitate learning, for instance, independent of the videos or speakers popularity. Thus, metadata about a lecture videos quality are crucial features for learning contexts, e.g., lecture video recommendation in search as learning scenarios. In this paper, we investigate whether automatically extracted features are correlated to quality aspects of a video. A set of scholarly videos from a Mass Open Online Course (MOOC) is analyzed regarding audio, linguistic, and visual features. Furthermore, a set of cross-modal features is proposed which are derived by combining transcripts, audio, video, and slide content. A user study is conducted to investigate the correlations between the automatically collected features and human ratings of quality aspects of a lecture video. Finally, the impact of our features on the knowledge gain of the participants is discussed.
102 - Jian Yue , Yanbo Gao , Shuai Li 2021
In-loop filtering is used in video coding to process the reconstructed frame in order to remove blocking artifacts. With the development of convolutional neural networks (CNNs), CNNs have been explored for in-loop filtering considering it can be trea ted as an image de-noising task. However, in addition to being a distorted image, the reconstructed frame is also obtained by a fixed line of block based encoding operations in video coding. It carries coding-unit based coding distortion of some similar characteristics. Therefore, in this paper, we address the filtering problem from two aspects, global appearance restoration for disrupted texture and local coding distortion restoration caused by fixed pipeline of coding. Accordingly, a three-stream global appearance and local coding distortion based fusion network is developed with a high-level global feature stream, a high-level local feature stream and a low-level local feature stream. Ablation study is conducted to validate the necessity of different features, demonstrating that the global features and local features can complement each other in filtering and achieve better performance when combined. To the best of our knowledge, we are the first one that clearly characterizes the video filtering process from the above global appearance and local coding distortion restoration aspects with experimental verification, providing a clear pathway to developing filter techniques. Experimental results demonstrate that the proposed method significantly outperforms the existing single-frame based methods and achieves 13.5%, 11.3%, 11.7% BD-Rate saving on average for AI, LDP and RA configurations, respectively, compared with the HEVC reference software.
Contrastive learning has delivered impressive results in many audio-visual representation learning scenarios. However, existing approaches optimize for learning either textit{global} representations useful for tasks such as classification, or textit{ local} representations useful for tasks such as audio-visual source localization and separation. While they produce satisfactory results in their intended downstream scenarios, they often fail to generalize to tasks that they were not originally designed for. In this work, we propose a versatile self-supervised approach to learn audio-visual representations that generalize to both the tasks which require global semantic information (e.g., classification) and the tasks that require fine-grained spatio-temporal information (e.g. localization). We achieve this by optimizing two cross-modal contrastive objectives that together encourage our model to learn discriminative global-local visual information given audio signals. To show that our approach learns generalizable video representations, we evaluate it on various downstream scenarios including action/sound classification, lip reading, deepfake detection, and sound source localization.
Portraying emotion and trustworthiness is known to increase the appeal of video content. However, the causal relationship between these signals and online user engagement is not well understood. This limited understanding is partly due to a scarcity in emotionally annotated data and the varied modalities which express user engagement online. In this contribution, we utilise a large dataset of YouTube review videos which includes ca. 600 hours of dimensional arousal, valence and trustworthiness annotations. We investigate features extracted from these signals against various user engagement indicators including views, like/dislike ratio, as well as the sentiment of comments. In doing so, we identify the positive and negative influences which single features have, as well as interpretable patterns in each dimension which relate to user engagement. Our results demonstrate that smaller boundary ranges and fluctuations for arousal lead to an increase in user engagement. Furthermore, the extracted time-series features reveal significant (p<0.05) correlations for each dimension, such as, count below signal mean (arousal), number of peaks (valence), and absolute energy (trustworthiness). From this, an effective combination of features is outlined for approaches aiming to automatically predict several user engagement indicators. In a user engagement prediction paradigm we compare all features against semi-automatic (cross-task), and automatic (task-specific) feature selection methods. These selected feature sets appear to outperform the usage of all features, e.g., using all features achieves 1.55 likes per day (Lp/d) mean absolute error from valence; this improves through semi-automatic and automatic selection to 1.33 and 1.23 Lp/d, respectively (data mean 9.72 Lp/d with a std. 28.75 Lp/d).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا