We present a fast GPU implementation of the image reconstruction routine, for a novel two strip PET detector that relies solely on the time of flight measurements.
We present a method and preliminary results of the image reconstruction in the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic Emission), interactions of the 511 keV photons with a cylindrical detector were generated. Pairs
of such photons, flying back-to-back, originate from e+e- annihilations inside a 1-mm spherical source. Spatial and temporal coordinates of hits were smeared using experimental resolutions of the detector. We incorporated the algorithm of the 3D Filtered Back Projection, implemented in the STIR and TomoPy software packages, which differ in approximation methods. Consistent results for the Point Spread Functions of ~5/7,mm and ~9/20, mm were obtained, using STIR, for transverse and longitudinal directions, respectively, with no time of flight information included.
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In
this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
In this article we present a novel method of hit time and hit position reconstruction in long scintillator detectors. We take advantage of the fact that for this kind of detectors amplitude and shape of registered signals depends strongly on the posi
tion where particle hit the detector. The reconstruction is based on determination of the degree of similarity between measured and averaged signals stored in a library for a set of well-defined positions along the scintillator. Preliminary results of validation of the introduced method with experimental data obtained by means of the double strip prototype of the J-PET detector are presented.
The novel whole-body PET system based on plastic scintillators is developed by the {J-PET} Collaboration. It consists of plastic scintillator strips arranged axially in the form of a cylinder, allowing the cost-effective construction of the total-bod
y PET. In order to determine properties of the scanner prototype and optimize its geometry, advanced computer simulations using the GATE software were performed. The spatial resolution, the sensitivity, the scatter fraction and the noise equivalent count rate were estimated according to the NEMA norm as a function of the length of the tomograph, number of the detection layers, diameter of the tomographic chamber and for various types of the applied readout. For the single-layer geometry with the diameter of 85 cm, strip length of 100 cm, cross-section of 4 mm x 20 mm and silicon photomultipliers with the additional layer of wavelength shifter as the readout, the spatial resolution (FWHM) in the centre of the scanner is equal to 3 mm (radial, tangential) and 6 mm (axial). For the analogous double-layer geometry with the same readout, diameter and scintillator length, with the strip cross-section of 7 mm x 20 mm, the NECR peak of 300 kcps was reached at 40 kBq/cc activity concentration, the scatter fraction is estimated to about 35% and the sensitivity at the centre amounts to 14.9 cps/kBq. Sensitivity profiles were also determined.
The Jagiellonian Positron Emission Tomograph (J-PET) project carried out in the Institute of Physics of the Jagiellonian University is focused on construction and tests of the first prototype of PET scanner for medical diagnostic which allows for the
simultaneous 3D imaging of the whole human body using organic scintillators. The J-PET prototype consists of 192 scintillator strips forming three cylindrical layers which are optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolutions. In this article we present time calibration and synchronization of the whole J-PET detection system by irradiating each single detection module with a 22Na source and a small detector providing common reference time for synchronization of all the modules.