ﻻ يوجد ملخص باللغة العربية
We will expose in this paper our advances towards a proof of the equivalence between FRW background expansion, during some period of time that contains primordial inflation, and the statistical isotropy of the primordial curvature perturbation $zeta$ at the end of this period of time. Our motivation rests on the growing interest in the existence of a preferred direction in the Universe hinted by the continuous presence of anomalies in the CMB data.
We apply our symmetry based Power tensor technique to test conformity of PLANCK Polarization maps with statistical isotropy. On a wide range of angular scales (l=40-150), our preliminary analysis detects many statistically anisotropic multipoles in f
We have used the Union2.1 SNIa compilation to search for possible Hubble expansion anisotropies, dividing the sky in 9 solid angles containing roughly the same number of SNIa, as well as in the two Galactic hemispheres. We identified only one sky reg
We test the statistical isotropy (SI) of the $E$-mode polarization of the cosmic microwave background (CMB) radiation observed by the Planck satellite using two statistics, namely, the contour Minkowski Tensor (CMT) and the Directional statistic ($ma
The small but measurable effect of weak gravitational lensing on the cosmic microwave background radiation provide information about the large-scale distribution of matter in the universe. We use the all sky distribution of matter, as represented by
We investigate the thermodynamics of FRW (Friedmann-Robertson-Walker) universe in the extended phase space. We generalize the unified first law with a cosmological constant $Lambda$ by using the Misner-Sharp energy. We treat the cosmological constant