ترغب بنشر مسار تعليمي؟ اضغط هنا

Single pulse and profile variability study of PSR J1022+1001

119   0   0.0 ( 0 )
 نشر من قبل Kuo Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Millisecond pulsars (MSPs) are known as highly stable celestial clocks. Nevertheless, recent studies have revealed the unstable nature of their integrated pulse profiles, which may limit the achievable pulsar timing precision. In this paper, we present a case study on the pulse profile variability of PSR J1022+1001. We have detected approximately 14,000 sub-pulses (components of single pulses) in 35-hr long observations, mostly located at the trailing component of the integrated profile. Their flux densities and fractional polarisation suggest that they represent the bright end of the energy distribution in ordinary emission mode and are not giant pulses. The occurrence of sub-pulses from the leading and trailing components of the integrated profile is shown to be correlated. For sub-pulses from the latter, a preferred pulse width of approximately 0.25 ms has been found. Using simultaneous observations from the Effelsberg 100-m telescope and the Westerbork Synthesis Radio Telescope, we have found that the integrated profile varies on a timescale of a few tens of minutes. We show that improper polarisation calibration and diffractive scintillation cannot be the sole reason for the observed instability. In addition, we demonstrate that timing residuals generated from averages of the detected sub-pulses are dominated by phase jitter, and place an upper limit of ~700 ns for jitter noise based on continuous 1-min integrations.



قيم البحث

اقرأ أيضاً

96 - Yi Feng , George Hobbs , Di Li 2020
Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we have recorded 10^5 single pulses from PSR J1022+1001. We studied the polarization properties, their energy distribution and their times of arrival. This is only possible with the high sensitivity available using FAST. There is no indication that PSR~J1022+1001 exhibits giant pulse, nulling or traditional mode changing phenomena. The energy in the leading and trailing components of the integrated profile is shown to be correlated. The degree of both linear and circular polarization increases with the pulse flux density for individual pulses. Our data indicates that pulse jitter leads to an excess noise in the timing residuals of 67 ns when scaled to one hour, which is consistent with Liu et al. (2015). We have unsuccessfully trialled various methods to improve timing precision through the selection of specific single pulses. Our work demonstrates that FAST can detect individual pulses from pulsars that are observed in order to detect and study gravitational waves. This capability enables detailed studies, and parameterisation, of the noise processes that affect the sensitivity of a pulsar timing array.
95 - S. Q. Wang , J. B. Wang , N. Wang 2021
We present radio observation of a millisecond pulsar PSR J0621+1002 using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The pulsar shows periodic pulse intensity modulations for both the first and the third pulse components. The f luctuation spectrum of the first pulse component has one peak of 3.0$pm$0.1 pulse periods, while that of the third pulse component has two diffused peaks of 3.0$pm$0.1 and 200$pm$1 pulse periods. The single pulse timing analysis is carried out for this pulsar and the single pulses can be divided into two classes based on the post-fit timing residuals. We examined the achievable timing precision using only the pulses in one class or bright pulses. However, the timing precision improvement is not achievable.
Accreting millisecond pulsars show significant variability of their pulse profiles, especially at low accretion rates. On the other hand, their X-ray spectra are remarkably similar with not much variability over the course of the outbursts. For the f irst time, we have discovered that during the 2008 outburst of SAX J1808.4-3658 a major pulse profile change was accompanied by a dramatic variation of the disc luminosity at almost constant total luminosity. We argue that this phenomenon is related to a change in the coupling between the neutron star magnetic field and the accretion disc. The varying size of the pulsar magnetosphere can influence the accretion curtain geometry and affect the shape and the size of the hotspots. Using this physical picture, we develop a self-consistent model that successfully describes simultaneously the pulse profile variation as well as the spectral transition. Our findings are particularly important for testing the theories of accretion onto magnetized neutron stars, better understanding of the accretion geometry as well as the physics of disc-magnetosphere coupling. The identification that varying hotspot size can lead to pulse profile changes has profound implications for determination of the neutron star masses and radii.
The Double Pulsar, PSR J$0737$$-$$3039$A/B, is a unique system in which both neutron stars have been detected as radio pulsars. As shown in Ferdman et al., there is no evidence for pulse profile evolution of the A pulsar, and the geometry of the puls ar was fit well with a double-pole circular radio beam model. Assuming a more realistic polar cap model with a vacuum retarded dipole magnetosphere configuration including special relativistic effects, we create synthesized pulse profiles for A given the best-fit geometry from the simple circular beam model. By fitting synthesized pulse profiles to those observed from pulsar A, we constrain the geometry of the radio beam, namely the half-opening angle and the emission altitude, to be $30^circ$ and $10$ neutron star radii, respectively. Combining the observational constraints of PSR J$0737$$-$$3039$A/B, we are able to construct the full three-dimensional orbital geometry of the Double Pulsar. The relative angle between the spin axes of the two pulsars ($Delta_S$) is estimated to be ($138^circ pm 5^circ$) at the current epoch and will likely remain constant until tidal interactions become important in $sim$$85$ Myr, at merger.
Using the state-of-the-art SKA precursor, the MeerKAT radio telescope, we explore the limits to precision pulsar timing of millisecond pulsars achievable due to pulse stochasticity (jitter). We report new jitter measurements in 15 of the 29 pulsars i n our sample and find that the levels of jitter can vary dramatically between them. For some, like the 2.2~ms pulsar PSR J2241--5236, we measure an implied jitter of just $sim$ 4~ns/hr, while others like the 3.9~ms PSR J0636--3044 are limited to $sim$ 100 ns/hr. While it is well known that jitter plays a central role to limiting the precision measurements of arrival times for high signal-to-noise ratio observations, its role in the measurement of dispersion measure (DM) has not been reported, particularly in broad-band observations. Using the exceptional sensitivity of MeerKAT, we explored this on the bright millisecond pulsar PSR J0437--4715 by exploring the DM of literally every pulse. We found that the derived single pulse DMs vary by typically 0.0085 cm$^{-3}$ pc from the mean, and that the best DM estimate is limited by the differential pulse jitter across the band. We postulate that all millisecond pulsars will have their own limit on DM precision which can only be overcome with longer integrations. Using high-time resolution filterbank data of 9 $mu$s, we also present a statistical analysis of single pulse phenomenology. Finally, we discuss optimization strategies for the MeerKAT pulsar timing program and its role in the context of the International Pulsar Timing Array (IPTA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا