ﻻ يوجد ملخص باللغة العربية
We conducted radio interferometric observations of six pulsars at 610 MHz using the Giant Metrewave Radio Telescope (GMRT). All these objects were claimed or suspected to be the gigahertz-peaked spectra (GPS) pulsars. For a half of the sources in our sample the interferometric imaging provides the only means to estimate their flux at 610 MHz due to a strong pulse scatter-broadening. In our case, these pulsars have very high dispersion measure values and we present their spectra containing for the first time low-frequency measurements. The remaining three pulsars were observed at low frequencies using the conventional pulsar flux measurement method. The interferometric imaging technique allowed us to re-examine their fluxes at 610 MHz. We were able to confirm the GPS feature in the PSR B1823$-$13 spectrum and select a GPS candidate pulsar. These results clearly demonstrate that the interferometric imaging technique can be successfully applied to estimate flux density of pulsars even in the presence of strong scattering.
Studies have shown that mergers of massive galaxy clusters produce shocks and turbulence in the intra-cluster medium, the possible event that creates radio relics, as well as the radio halos. Here we present GMRT dual-band (235 and 610~MHz) radio obs
In this paper we present results from flux density measurements for 21 pulsars over a wide frequency range, using the Giant Metrewave Radio Telescope (GMRT) and the Effelsberg telescope. Our sample was a set of mostly newly discovered pulsars from th
The Murchison Widefield Array (MWA), and its recently-developed Voltage Capture System (VCS), facilitates extending the low-frequency range of pulsar observations at high-time and -frequency resolution in the Southern Hemisphere, providing further in
We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145-0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detecti
We present high signal-to-noise, full polarization pulse profiles for 40 bright, slowly-rotating (non-recycled) pulsars using the new Ultra-Wideband Low-frequency (UWL; 704-4032 MHz) receiver on the Parkes radio telescope. We obtain updated and accur