ترغب بنشر مسار تعليمي؟ اضغط هنا

Reanalyses of Anomalous Gravitational Microlensing Events in the OGLE-III Early Warning System Database with Combined Data

222   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reanalyze microlensing events in the published list of anomalous events that were observed from the OGLE lensing survey conducted during 2004-2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of 8 events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of 5 events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for 6 events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein radii of 3 events for which multi-band data are available. These events are OGLE-2006-BLG-238, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. For OGLE-2008-BLG-143, we detect higher-order effect induced by the changes of the observers position caused by the orbital motion of the Earth around the Sun. In addition, we present degenerate solutions resulting from the known close/wide or ecliptic degeneracy. Finally, we note that the masses of the binary companions of the lenses of OGLE-2006-BLG-450 and OGLE-2008-BLG-210 are in the brown-dwarf regime.



قيم البحث

اقرأ أيضاً

Microlensing events are usually selected among single-peaked non-repeating light curves in order to avoid confusion with variable stars. However, a microlensing event may exhibit a second microlensing brightening episode when the source or/and the le ns is a binary system. A careful analysis of these repeating events provides an independent way to study the statistics of wide binary stars and to detect extrasolar planets. Previous theoretical studies predicted that 0.5 - 2 % of events should repeat due to wide binary lenses. We present a systematic search for such events in about 4000 light curves of microlensing candidates detected by the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic Bulge from 1992 to 2007. The search reveals a total of 19 repeating candidates, with 6 clearly due to a wide binary lens. As a by-product we find that 64 events (~2% of the total OGLE-III sample) have been miss-classified as microlensing; these miss-classified events are mostly nova or other types of eruptive stars. The number and importance of repeating events will increase considerably when the next-generation wide-field microlensing experiments become fully operational in the future.
Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR) to identify a forthcoming event tens of seconds before the companions collide and merge. Here we report on the design and testing of an early warning gravitational-wave detection pipeline. Early warning alerts can be produced for sources that are at low enough redshift so that a large enough SNR accumulates $sim 10 - 60,rm s$ before merger. We find that about 7% (respectively, 49%) of the total detectable BNS mergers will be detected $60, rm s$ ($10, rm s$) before the merger. About 2% of the total detectable BNS mergers will be detected before merger and localized to within $100, rm text{deg}^2$ (90% credible interval). Coordinated observing by several wide-field telescopes could capture the event seconds before or after the merger. LIGO-Virgo detectors at design sensitivity could facilitate observing at least one event at the onset of merger.
Modern surveys of gravitational microlensing events have progressed to detecting thousands per year. Surveys are capable of probing Galactic structure, stellar evolution, lens populations, black hole physics, and the nature of dark matter. One of the key avenues for doing this is studying the microlensing Einstein radius crossing time distribution ($t_E$). However, systematics in individual light curves as well as over-simplistic modeling can lead to biased results. To address this, we developed a model to simultaneously handle the microlensing parallax due to Earths motion, systematic instrumental effects, and unlensed stellar variability with a Gaussian Process model. We used light curves for nearly 10,000 OGLE-III and IV Milky Way bulge microlensing events and fit each with our model. We also developed a forward model approach to infer the timescale distribution by forward modeling from the data rather than using point estimates from individual events. We find that modeling the variability in the baseline removes a source of significant bias in individual events, and previous analyses over-estimated the number of long timescale ($t_E>100$ days) events due to their over simplistic models ignoring parallax effects and stellar variability. We use our fits to identify hundreds of events that are likely black holes.
We present a systematic search for parallax microlensing events among a total of 512 microlensing candidates in the OGLE II database for the 1997-1999 seasons. We fit each microlensing candidate with both the standard microlensing model and also a pa rallax model that accounts for the Earths motion around the Sun. We then search for the parallax signature by comparing the chi^2 of the standard and parallax models. For the events which show a significant improvement, we further use the `duration of the event and the signal-to-noise ratio as criteria to separate true parallax events from other noisy microlensing events. We have discovered one convincing new candidate, sc33_4505, and seven other marginal cases. The convincing candidate (sc33_4505) is caused by a slow-moving, and likely low-mass, object, similar to other known parallax events. We found that irregular sampling and gaps between observing seasons hamper the recovery of parallax events. We have also searched for long-duration events that do not show parallax signatures. The lack of parallax effects in a microlensing event puts a lower-limit on the Einstein radius projected onto the observer plane, which in turn imposes a lower limit on the lens mass divided by the relative lens-source parallax. Most of the constraints are however quite weak.
Our knowledge of the birth mass function of neutron stars and black holes is based on observations of binary systems but the binary evolution likely affects the final mass of the compact object. Gravitational microlensing allows us to detect and meas ure masses of isolated stellar remnants, which are nearly impossible to obtain with other techniques. Here, we analyze a sample of 4360 gravitational microlensing events detected during the third phase of the OGLE survey. We select a subsample of 87 long-timescale low-blending events. We estimate the masses of lensing objects by combining photometric data from OGLE and proper-motion information from OGLE and Gaia EDR3. We find 35 high-probability dark lenses - white dwarfs, neutron stars, and black holes - which we use to constrain the mass function of isolated stellar remnants. In the range 1-100 M_Sun, occupied by neutron stars and black holes, the remnant mass function is continuous and can be approximated as a power-law with a slope of $0.83^{+0.16}_{-0.18}$ with a tentative evidence against a broad gap between neutron stars and black holes. This slope is slightly flatter than the slope of the mass function of black holes detected by gravitational wave detectors LIGO and Virgo, although both values are consistent with each other within the quoted error bars. The measured slope of the remnant mass function agrees with predictions of some population synthesis models of black hole formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا