ﻻ يوجد ملخص باللغة العربية
We consider linear star products on $R^d$ of Lie algebra type. First we derive the closed formula for the polydifferential representation of the corresponding Lie algebra generators. Using this representation we define the Weyl star product on the dual of the Lie algebra. Then we construct a gauge operator relating the Weyl star product with the one which is closed with respect to some trace functional, $Tr( fstar g)= Tr( fcdot g)$. We introduce the derivative operator on the algebra of the closed star product and show that the corresponding Leibnitz rule holds true up to a total derivative. As a particular example we study the space $R^3_theta$ with $mathfrak{su}(2)$ type noncommutativity and show that in this case the closed star product is the one obtained from the Duflo quantization map. As a result a Laplacian can be defined such that its commutative limit reproduces the ordinary commutative one. The deformed Leibnitz rule is applied to scalar field theory to derive conservation laws and the corresponding noncommutative currents.
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measur
We consider the noncommutative space-times with Lie-algebraic noncommutativity (e.g. $kappa$-deformed Minkowski space). In the framework with classical fields we extend the $star$-product in order to represent the noncommutative translations in terms
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometr
The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We s
We consider a noncommutative field theory with space-time $star$-commutators based on an angular noncommutativity, namely a solvable Lie algebra: the Euclidean in two dimension. The $star$-product can be derived from a twist operator and it is shown