ﻻ يوجد ملخص باللغة العربية
In the standard testing theory of DeNicola-Hennessy one process is considered to be a refinement of another if every test guaranteed by the former is also guaranteed by the latter. In the domain of web services this has been recast, with processes viewed as servers and tests as clients. In this way the standard refinement preorder between servers is determined by their ability to satisfy clients. But in this setting there is also a natural refinement preorder between clients, determined by their ability to be satisfied by servers. In more general settings where there is no distinction between clients and servers, but all processes are peers, there is a further refinement preorder based on the mutual satisfaction of peers. We give a uniform account of these three preorders. In particular we give two characterisations. The first is behavioural, in terms of traces and ready sets. The second, for finite processes, is equational.
May and must testing were introduced by De Nicola and Hennessy to define semantic equivalences on processes. May-testing equivalence exactly captures safety properties, and must-testing equivalence liveness properties. This paper proposes reward test
In 1992 Wang & Larsen extended the may- and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to fin
We introduce a notion of real-valued reward testing for probabilistic processes by extending the traditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may and must preorders turn out to be inverses. We sh
The combination of nondeterminism and probability in concurrent systems lead to the development of several interpretations of process behavior. If we restrict our attention to linear properties only, we can identify three main approaches to trace and
Two of the most studied extensions of trace and testing equivalences to nondeterministic and probabilistic processes induce distinctions that have been questioned and lack properties that are desirable. Probabilistic trace-distribution equivalence di