ﻻ يوجد ملخص باللغة العربية
In the previous paper cite{L-Z}, for a characteristic problem with not necessarily small initial data given on a complete null cone decaying like that in the work cite{Ch-K} of the stability of Minkowski spacetime by Christodoulou and Klainerman, we proved the local existence in retarded time, which means the solution to the vacuum Einstein equations exists in a uniform future neighborhood, while the global existence in retarded time is the weak cosmic censorship conjecture. In this paper, we prove that the local existence in retarded time still holds when the data is assumed to decay slower, like that in Bieris work cite{Bie} on the extension to the stability of Minkowski spacetime. Such decay guarantees the existence of the limit of the Hawking mass on the initial null cone, when approaching to infinity, in an optimal way.
We consider a characteristic problem of the vacuum Einstein equations with part of the initial data given on a future complete null cone with suitable decay, and show that the solution exists uniformly around the null cone for general such initial da
This note describes the behavior of null-geodesics near nondegenerate Killing horizons in language amenable to the application of a general framework, due to Vasy and Hintz, for the analysis of both linear and nonlinear wave equations. Throughout, th
In this article we study a class of prescribed curvature problems on complete noncompact Riemannian manifolds. To be precise, we derive local $C^0$-estimate under an asymptotic condition which is in effect optimal, and prove the existence of complete
We show that the spherically symmetric Einstein-scalar-field equations for wave-like decaying initial data at null infinity have unique global solutions in (0, infty) and unique generalized solutions on [0, infty) in the sense of Christodoulou. We emphasize that this decaying condition is sharp.
In this paper, we initiate the study of the instability of naked singularities without symmetries. In a series of papers, Christodoulou proved that naked singularities are not stable in the context of the spherically symmetric Einstein equations coup