ترغب بنشر مسار تعليمي؟ اضغط هنا

Intensity and phase noise correlations in a dual-frequency VECSEL operating at telecom wavelength

277   0   0.0 ( 0 )
 نشر من قبل Fabien Bretenaker
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Syamsundar De n




اسأل ChatGPT حول البحث

The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency (RF) beatnote generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have a precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of our interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multi-mode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported, which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.



قيم البحث

اقرأ أيضاً

An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100 % in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140 dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.
118 - A. El Amili 2011
We present an experimental observation of phase locking effects in the intensity noise spectrum of a semiconductor laser. These noise correlations are created in the medium by coherent carrier-population oscillations induced by the beatnote between t he lasing and non-lasing modes of the laser. This phase locking leads to a modification of the intensity noise profile at around the cavity free-spectral-range value. The noise correlations are evidenced by varying the relative phase shift between the laser mode and the non-lasing adjacent side modes.
We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of their beatnote are investigated. The intensity noises of the two modes and their correlations are well predicted by a theory based on coupled rate equations. The phase noise of the beatnote is well described by considering both thermal effects and the effect of phase-amplitude coupling. The good agreement between theory and experiment indicates possible ways to further decrease the laser noises.
We use dispersive Fourier transformation to measure shot-to-shot spectral instabilities in femtosecond supercontinuum generation. We study both the onset phase of supercontinuum generation with distinct dispersive wave generation, as well as a highly -unstable supercontinuum regime spanning an octave in bandwidth. Wavelength correlation maps allow interactions between separated spectral components to be identified, even when such interactions are not apparent in shot-to-shot or average measurements. Experimental results are interpreted using numerical simulations. Our results show the clear advantages of dispersive Fourier transformation for studying spectral noise during supercontinuum generation.
The optical-to-electrical conversion, which is the basis of optical detectors, can be linear or nonlinear. When high sensitivities are needed single-photon detectors (SPDs) are used, which operate in a strongly nonlinear mode, their response being in dependent of the photon number. Nevertheless, photon-number resolving (PNR) detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication, the PNR functionality is key to many protocols for establishing, swapping and measuring entanglement, and can be used to detect photon-number-splitting attacks. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, e.g. in long-distance optical communications, fluorescence spectroscopy, optical time-domain reflectometry. We demonstrate here a PNR detector based on parallel superconducting nanowires and capable of counting up to 4 photons at telecommunication wavelengths, with ultralow dark count rate and high counting frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا