ﻻ يوجد ملخص باللغة العربية
We ask whether it is possible to anonymously communicate a large amount of data using only public (non-anonymous) communication together with a small anonymous channel. We think this is a central question in the theory of anonymous communication and to the best of our knowledge this is the first formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short key $k$ which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: - Introducing and formally defining anonymous steganography, - A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), - A lower bound on the number of bits which are needed to bootstrap anonymous communication.
Motivated by the effectiveness of correlation attacks against Tor, the censorship arms race, and observations of malicious relays in Tor, we propose that Tor users capture their trust in network elements using probability distributions over the sets
Blockchain is built on a peer-to-peer network that relies on frequent communications among the distributively located nodes. In particular, the consensus mechanisms (CMs), which play a pivotal role in blockchain, are communication resource-demanding
We propose a W state-based protocol for anonymously transmitting quantum messages in a quantum network. Different from the existing protocols [A. Unnikrishnan, et al., Phys. Rev. Lett. 122, 240501 (2019)], the proposed protocol can be effectively imp
Anonymous data collection systems allow users to contribute the data necessary to build services and applications while preserving their privacy. Anonymity, however, can be abused by malicious agents aiming to subvert or to sabotage the data collecti
Anonymous networks have enabled secure and anonymous communication between the users and service providers while maintaining their anonymity and privacy. The hidden services in the networks are dynamic and continuously change their domains and servic