ﻻ يوجد ملخص باللغة العربية
The 2.1-s anomalous X-ray pulsar 1E 1547.0-5408 exhibited an X-ray outburst on 2009 January 22, emitting a large number of short bursts. The wide-band all- sky monitor (WAM) on-board Suzaku detected at least 254 bursts in the 160keV-6.2MeV band over the period of January 22 00:57-17:02 UT from the direction of 1E 1547.0-5408. One of these bursts, which occurred at 06:45:13, produced the brightest fluence in the 0.5-6.2MeV range, with an averaged 0.16-6.2MeV flux and extrapolated 25 keV-2 MeV fluence of about 3x10-6 erg cm-2 s-1 and about 3x10-4 erg cm-2, respectively. After pile-up corrections, the time-resolved WAM spectra of this burst were well-fitted in the 0.16-6.2MeV range by two-component models; specifically, a blackbody plus an optically thin thermal bremsstrahlung or a combination of a blackbody and a power-law component with an exponential cutoff. These results are compared with previous works reporting the persistent emission and weaker short bursts followed by the same outburst.
The fastest-rotating magnetar 1E 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7 days after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux
A bright burst, followed by an X-ray tail lasting ~10 ks, was detected during an XMM-Newton observation of the magnetar 1E 1547.0-5408 carried out on 2009 February 3. The burst, also observed by SWIFT/BAT, had a spectrum well fit by the sum of two bl
The Suzaku data of the highly variable magnetar 1E 1547.0$-$5408, obtained during the 2009 January activity, were reanalyzed. The 2.07 s pulsation of the 15--40 keV emission detected with the HXD was found to be phase modulated, with a period of $36.
We present the evolution of the X-ray emission properties of the magnetar 1E 1547.0-5408 since February 2004 over a time period covering three outbursts. We analyzed new and archival observations taken with the Swift, NuSTAR, Chandra and XMM-Newton X
This paper describes an analysis of the NuSTAR data of the fastest-rotating magnetar 1E 1547$-$5408, acquired in 2016 April for a time lapse of 151 ks. The source was detected with a 1-60 keV flux of $1.7 times 10^{-11}$ ergs s$^{-1}$ cm$^{-2}$, and