ﻻ يوجد ملخص باللغة العربية
The definition of the Hamiltonian operator H for a general wave equa-tion in a general spacetime is discussed. We recall that H depends on the coordinate system merely through the corresponding reference frame. When the wave equation involves a gauge choice and the gauge change is time-dependent, H as an operator depends on the gauge choice. This dependence extends to the energy operator E, which is the Hermitian part of H. We distinguish between this ambiguity issue of E and the one that occurs due to a mere change of the represen-tation (e.g. transforming the Dirac wave function from the Dirac representation to a Foldy-Wouthuysen representation). We also assert that the energy operator ought to be well defined in a given ref-erence frame at a given time, e.g. by comparing the situation for this operator with the main features of the energy for a classical Hamilto-nian particle.
We investigate the quantum mechanical wave equations for free particles of spin 0,1/2,1 in the background of an arbitrary static gravitational field in order to explicitly determine if the phase of the wavefunction is $S/hbar = int p_{mu} dx^{mu} / h
The Averaged Null Energy Condition (ANEC) states that the integral along a complete null geodesic of the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative. ANEC can be used to rule out spacetimes with e
A photon with a modulated wavefront can produce a quantum communication channel in a larger Hilbert space. For example, higher dimensional quantum key distribution (HD-QKD) can encode information in the transverse linear momentum (LM) or orbital angu
In this work we explore some aspects of two holographic models for dark energy within the interacting scenario for the dark sector with the inclusion of spatial curvature. A statistical analysis for each holographic model is performed together with t
The current race in quantum communication -- endeavouring to establish a global quantum network -- must account for special and general relativistic effects. The well-studied general relativistic effects include Shapiro time-delay, gravitational lens