ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multicore Tool for Constraint Solving

102   0   0.0 ( 0 )
 نشر من قبل Roberto Amadini
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

*** To appear in IJCAI 2015 proceedings *** In Constraint Programming (CP), a portfolio solver uses a variety of different solvers for solving a given Constraint Satisfaction / Optimization Problem. In this paper we introduce sunny-cp2: the first parallel CP portfolio solver that enables a dynamic, cooperative, and simultaneous execution of its solvers in a multicore setting. It incorporates state-of-the-art solvers, providing also a usable and configurable framework. Empirical results are very promising. sunny-cp2 can even outperform the performance of the oracle solver which always selects the best solver of the portfolio for a given problem.



قيم البحث

اقرأ أيضاً

*** To appear in Theory and Practice of Logic Programming (TPLP) *** Within the context of constraint solving, a portfolio approach allows one to exploit the synergy between different solvers in order to create a globally better solver. In this pap er we present SUNNY: a simple and flexible algorithm that takes advantage of a portfolio of constraint solvers in order to compute --- without learning an explicit model --- a schedule of them for solving a given Constraint Satisfaction Problem (CSP). Motivated by the performance reached by SUNNY vs. different simulations of other state of the art approaches, we developed sunny-csp, an effective portfolio solver that exploits the underlying SUNNY algorithm in order to solve a given CSP. Empirical tests conducted on exhaustive benchmarks of MiniZinc models show that the actual performance of SUNNY conforms to the predictions. This is encouraging both for improving the power of CSP portfolio solvers and for trying to export them to fields such as Answer Set Programming and Constraint Logic Programming.
Message passing algorithms have proved surprisingly successful in solving hard constraint satisfaction problems on sparse random graphs. In such applications, variables are fixed sequentially to satisfy the constraints. Message passing is run after e ach step. Its outcome provides an heuristic to make choices at next step. This approach has been referred to as `decimation, with reference to analogous procedures in statistical physics. The behavior of decimation procedures is poorly understood. Here we consider a simple randomized decimation algorithm based on belief propagation (BP), and analyze its behavior on random k-satisfiability formulae. In particular, we propose a tree model for its analysis and we conjecture that it provides asymptotically exact predictions in the limit of large instances. This conjecture is confirmed by numerical simulations.
Discovering the set of closed frequent patterns is one of the fundamental problems in Data Mining. Recent Constraint Programming (CP) approaches for declarative itemset mining have proven their usefulness and flexibility. But the wide use of reified constraints in current CP approaches raises many difficulties to cope with high dimensional datasets. This paper proposes CLOSED PATTERN global constraint which does not require any reified constraints nor any extra variables to encode efficiently the Closed Frequent Pattern Mining (CFPM) constraint. CLOSED-PATTERN captures the particular semantics of the CFPM problem in order to ensure a polynomial pruning algorithm ensuring domain consistency. The computational properties of our constraint are analyzed and their practical effectiveness is experimentally evaluated.
We compare the impact of hardware advancement and algorithm advancement for SAT solving over the last two decades. In particular, we compare 20-year-old SAT-solvers on new computer hardware with modern SAT-solvers on 20-year-old hardware. Our finding s show that the progress on the algorithmic side has at least as much impact as the progress on the hardware side.
188 - V. Flunkert , E. Schoell 2009
pydelay is a python library which translates a system of delay differential equations into C-code and simulates the code using scipy weave.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا