ﻻ يوجد ملخص باللغة العربية
We have performed powder inelastic neutron scattering measurements on the unconventional superconductor $beta$-FeSe ($T_{rm c} simeq 8,mathrm{K}$). The spectra reveal highly dispersive paramagnetic fluctuations emerging from the square-lattice wave vector $(pi,0)$ extending beyond 80 meV in energy. Measurements as a function of temperature at an energy of $sim 13,mathrm{meV}$ did not show any variation from $T_{rm c}$ to $104,mathrm{K}$. The results show that FeSe is close to an instability towards $(pi,0)$ antiferromagnetism characteristic of the parent phases of the high-$T_{rm c}$ iron arsenide superconductors, and that the iron paramagnetic moment is neither affected by the orthorhombic-to-tetragonal structural transition at $T_{rm s} simeq 90,mathrm{K}$ nor does it undergo a change in spin state over the temperature range studied.
Magnetic fluctuations in the molecular-intercalated FeSe superconductor Li{x}(ND2){y}(ND3){1-y}Fe2Se2 (Tc = 43K) have been measured by inelastic neutron scattering from a powder sample. The strongest magnetic scattering is observed at a wave vector Q
Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the i
We report an Fe $L$-edge resonant inelastic x-ray scattering (RIXS) study of the unusual superconductor $beta$-FeSe. The high energy resolution of this RIXS experiment ($approx,$55$,$meV FWHM) made it possible to resolve low-energy excitations of the
We have investigated the electronic structures of recently discovered superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy with high bulk sensitivity. The large Fe 3d spectral weight is located in the vicinity of the Fermi leve
We report neutron inelastic scattering measurements on the stoichiometric iron-based superconductor LiFeAs. We find evidence for (i) magnetic scattering consistent with strong antiferromagnetic fluctuations, and (ii) an increase in intensity in the s