We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1~pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000~AU scale. As well as on a spatial extent, the velocity ranges of the arc structures, $sim0.5,mathrm{km,s}^{-1}$, are in agreement with the ALMA observations. We also found that circumstellar disks are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.