ترغب بنشر مسار تعليمي؟ اضغط هنا

A rigorous derivation of multicomponent diffusion laws

101   0   0.0 ( 0 )
 نشر من قبل WenAn Yong
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is concerned with the dynamics of a mixture of gases. Under the assumption that all the gases are isothermal and inviscid, we show that the governing equations have an elegant conservation-dissipation structure. With the help of this structure, a multicomponent diffusion law is derived mathematically rigorously. This clarifies a long-standing non-uniqueness issue in the field for the first time. The multicomponent diffusion law derived here takes the spatial gradient of an entropic variable as the thermodynamic forces and satisfies a nonlinear version of the Onsager reciprocal relations.



قيم البحث

اقرأ أيضاً

We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.
We show that the local density of states (LDOS) of a wide class of tight-binding models has a weak body-order expansion. Specifically, we prove that the resulting body-order expansion for analytic observables such as the electron density or the energ y has an exponential rate of convergence both at finite Fermi-temperature as well as for insulators at zero Fermi-temperature. We discuss potential consequences of this observation for modelling the potential energy landscape, as well as for solving the electronic structure problem.
82 - H. A. Erbay , S. Erbay , A. Erkip 2016
In this paper we derive generalized forms of the Camassa-Holm (CH) equation from a Boussinesq-type equation using a two-parameter asymptotic expansion based on two small parameters characterizing nonlinear and dispersive effects and strictly followin g the arguments in the asymptotic derivation of the classical CH equation. The resulting equations generalize the CH equation in two different ways. The first generalization replaces the quadratic nonlinearity of the CH equation with a general power-type nonlinearity while the second one replaces the dispersive terms of the CH equation with fractional-type dispersive terms. In the absence of both higher-order nonlinearities and fractional-type dispersive effects, the generalized equations derived reduce to the classical CH equation that describes unidirectional propagation of shallow water waves. The generalized equations obtained are compared to similar equations available in the literature, and this leads to the observation that the present equations have not appeared in the literature.
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformation s, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.
We give a brief historical account on microscopic explanations of electrical conduction. One aim of this short review is to show that Thermodynamics is fundamental to the theoretical understanding of the phenomenon. We discuss how the 2nd law, implem ented in the scope of Quantum Statistical Mechanics, can be naturally used to give mathematical sense to conductivity of very general quantum many-body models. This is reminiscent of original ideas of J.P. Joule. We start with Ohm and Joules discoveries and proceed by describing the Drude model of conductivity. The impact of Quantum Mechanics and the Anderson model are also discussed. The exposition is closed with the presentation of our approach to electrical conductivity based on the 2nd law of Thermodynamics as passivity of systems at thermal equilibrium. It led to new rigorous results on linear conductivity of interacting fermions. One example is the existence of so-called AC-conductivity measures for such a physical system. These measures are, moreover, Fourier transforms of time correlations of current fluctuations in the system. I.e., the conductivity satisfies, for a large class of quantum mechanical microscopic models, Green-Kubo relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا