ترغب بنشر مسار تعليمي؟ اضغط هنا

Validity of the single-particle description and charge noise resilience for multielectron quantum dots

247   0   0.0 ( 0 )
 نشر من قبل Sebastian Mehl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct an optimal set of single-particle states for few-electron quantum dots (QDs) using the method of natural orbitals (NOs). The NOs include also the effects of the Coulomb repulsion between electrons. We find that they agree well with the noniteracting orbitals for GaAs QDs of realistic parameters, while the Coulomb interactions only rescale the radius of the NOs compared to the noninteracting case. We use NOs to show that four-electron QDs are less susceptible to charge noise than their two-electron counterparts.



قيم البحث

اقرأ أيضاً

The valley degree of freedom presents challenges and opportunities for silicon spin qubits. An important consideration for singlet-triplet states is the presence of two distinct triplets, comprised of valley vs. orbital excitations. Here we show that both of these triplets are present in the typical operating regime, but that only the valley-excited triplet offers intrinsic protection against charge noise. We further show that this protection arises naturally in dots with stronger confinement. These results reveal an inherent advantage for silicon-based multi-electron qubits.
Electron spins in silicon quantum dots are promising qubits due to their long coherence times, scalable fabrication, and potential for all-electrical control. However, charge noise in the host semiconductor presents a major obstacle to achieving high -fidelity single- and two-qubit gates in these devices. In this work, we measure the charge-noise spectrum of a Si/SiGe singlet-triplet qubit over more than 13 decades in frequency using a combination of methods, including dynamically-decoupled exchange oscillations with up to 512 $pi$ pulses during the qubit evolution. The charge noise is colored across the entire frequency range of our measurements, although the spectral exponent changes with frequency. Moreover, the charge-noise spectrum inferred from conductance measurements of a proximal sensor quantum dot agrees with that inferred from coherent oscillations of the singlet-triplet qubit, suggesting that simple transport measurements can accurately characterize the charge noise over a wide frequency range in Si/SiGe quantum dots.
We present a detailed investigation of different excitonic states weakly confined in single GaAs/AlGaAs quantum dots obtained by the Al droplet-etching method. For our analysis we make use of temperature-, polarization- and magnetic field-dependent $ mu$-photoluminescence measurements, which allow us to identify different excited states of the quantum dot system. Besides that, we present a comprehensive analysis of g-factors and diamagnetic coefficients of charged and neutral excitonic states in Voigt and Faraday configuration. Supported by theoretical calculations by the Configuration interaction method, we show that the widely used single-particle Zeeman Hamiltonian cannot be used to extract reliable values of the g-factors of the constituent particles from excitonic transition measurements.
122 - Y. Benny , Y. Kodriano , E. Poem 2012
We present a comprehensive study of the optical transitions and selection rules of variably charged single self-assembled InAs/GaAs quantum dots. We apply high resolution polarization sensitive photoluminescence excitation spectroscopy to the same qu antum dot for three different charge states: neutral and negatively or positively charged by one additional electron or hole. From the detailed analysis of the excitation spectra, a full understanding of the single-carrier energy levels and the interactions between carriers in these levels is extracted for the first time.
Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single sp in-photon coupling. Coupling arbitrary pairs of spatially separated qubits in a quantum register poses a significant challenge as most qubit systems are constrained to two dimensions (2D) with nearest neighbor connectivity. For spins in silicon, new methods for quantum state transfer should be developed to achieve connectivity beyond nearest-neighbor exchange. Here we demonstrate shuttling of a single electron across a linear array of 9 series-coupled Si quantum dots in ~50 ns via a series of pairwise interdot charge transfers. By progressively constructing more complex pulse sequences we perform parallel shuttling of 2 and 3 electrons at a time through the 9-dot array. These experiments establish that physical transport of single electrons is feasible in large silicon quantum dot arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا