ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable two- and four-qubit parity measurement with a threshold photon counter

133   0   0.0 ( 0 )
 نشر من قبل Luke Govia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Parity measurement is a central tool to many quantum information processing tasks. In this Letter, we propose a method to directly measure two- and four-qubit parity with low overhead in hard- and software, while remaining robust to experimental imperfections. Our scheme relies on dispersive qubit-cavity coupling and photon counting that is sensitive only to intensity; both ingredients are widely realized in many different quantum computing modalities. For a leading technology in quantum computing, superconducting integrated circuits, we analyze the measurement contrast and the back action of the scheme and show that this measurement comes close enough to an ideal parity measurement to be applicable to quantum error correction.



قيم البحث

اقرأ أيضاً

High-fidelity, efficient quantum nondemolition readout of quantum bits is integral to the goal of quantum computation. As superconducting circuits approach the requirements of scalable, universal fault tolerance, qubit readout must also meet the dema nd of simplicity to scale with growing system size. Here we propose a fast, high-fidelity, scalable measurement scheme based on the state-selective ring-up of a cavity followed by photodetection with the recently introduced Josephson photomultiplier (JPM), a current-biased Josephson junction. This scheme maps qubit state information to the binary digital output of the JPM, circumventing the need for room-temperature heterodyne detection and offering the possibility of a cryogenic interface to superconducting digital control circuitry. Numerics show that measurement contrast in excess of 95% is achievable in a measurement time of 140 ns. We discuss perspectives to scale this scheme to enable readout of multiple qubit channels with a single JPM.
We propose and analyze a physical implementation of two-qubit parity measurements as required for continuous error correction, assuming a setup in which the individual qubits are strongly coupled to separate optical cavities. A single optical probe b eam scatters sequentially from the two cavities and the continuous parity measurement is realized via fixed quadrature homodyne photo-detection. We present models based on quantum stochastic differential equations (QSDEs) for both an ideal continuous parity measurement and our proposed cavity quantum electrodynamics (cavity QED) implementation; a recent adiabatic elimination theorem for QSDEs is used to assert strong convergence of the latter to the former in an appropriate limit of physical parameters. Performance of the cavity QED scheme is studied via numerical simulation with experimentally realistic parameters.
We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special sour ce, we implemented a highly efficient Grovers search algorithm and high-fidelity two qubits quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.
269 - Guan-Yu Wang , Tao Li , Qing Ai 2018
As the hyperentanglement of photon systems presents lots of unique opportunities in high-capacity quantum networking, the hyperentanglement purification protocol (hyper-EPP) becomes a vital project work and the quality of its accomplishment attracts much attention recently. Here we present the first theoretical scheme of faithful hyper-EPP for nonlocal two-photon systems in two degrees of freedom (DOFs) by constructing several fidelity-robust quantum circuits for hyper-encoded photons. With this faithful hyper-EPP, the bit-flip errors in both the polarization and spatial-mode DOFs can be efficiently corrected and the maximal hyperentanglement in two DOFs could be in principle achieved by performing the hyper-EPP multiple rounds. Moreover, the fidelity-robust quantum circuits, parity-check quantum nondemolition detectors, and SWAP gates make this hyper-EPP works faithfully as the errors coming from practical scattering, in these quantum circuits, are converted into a detectable failure rather than infidelity. Furthermore, this hyper-EPP can be directly extended to purify photon systems entangled in single polarization or spatial-mode DOF and that hyperentangled in polarization and multiple-spatial-mode DOFs.
We demonstrate fast two-qubit gates using a parity-violated superconducting qubit consisting of a capacitively-shunted asymmetric Josephson-junction loop under a finite magnetic flux bias. The second-order nonlinearity manifesting in the qubit enable s the interaction with a neighboring single-junction transmon qubit via first-order inter-qubit sideband transitions with Rabi frequencies up to 30~MHz. Simultaneously, the unwanted static longitudinal~(ZZ) interaction is eliminated with ac Stark shifts induced by a continuous microwave drive near-resonant to the sideband transitions. The average fidelities of the two-qubit gates are evaluated with randomized benchmarking as 0.967, 0.951, 0.956 for CZ, iSWAP and SWAP gates, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا