ترغب بنشر مسار تعليمي؟ اضغط هنا

Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

125   0   0.0 ( 0 )
 نشر من قبل Ulrika Forsberg
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.



قيم البحث

اقرأ أيضاً

The average prompt-fission-neutron multiplicity $bar{ u}$ is of significance in the areas of nuclear theory, nuclear nonproliferation, and nuclear energy. In this work, the surrogate-reaction method has been used for the first time to indirectly dete rmine $bar{ u}$ for $^{239}$Pu($n$,$f$) via $^{240}$Pu($alpha$,$alpha^{prime}f$) reactions. A $^{240}$Pu target was bombarded with a beam of 53.9-MeV $alpha$ particles. Scattered $alpha$ particles, fission products, and neutrons were measured with the NeutronSTARS detector array. Values of $bar{ u}$ were obtained for a continuous range of equivalent incident neutron energies between 0.25--26.25~MeV, and the results agree well with direct neutron measurements.
156 - O. V. Kiren 2013
Spontaneous fission and alpha decay are the main decay modes for superheavy nuclei. The superheavy nuclei which have small alpha decay half-life compared to spontaneous fission half-life will survive fission and can be detected in the laboratory thro ugh alpha decay. We have studied the alpha decay half-life and spontaneous half-life of some superheavy elements in the atomic range Z = 100-130. Spontaneous fission half-lives of superheavy nuclei have been calculated using the phenomenological formula and the alpha decay half-lives using Viola-Seaborg-Sobiczewski formula (Sobiczewski et al. 1989), semi empirical relation of Brown (1992) and formula based on generalized liquid drop model proposed by Dasgupta-Schubert and Reyes (2007). The results are reported here.
Radioactive $^{233}$U alpha recoil sources are being considered for the production of a thorium ion source to study the low-energy isomer in $^{229}$Th with high-resolution collinear laser spectroscopy at the IGISOL facility of the University of Jyva skyla. In this work two different $^{233}$U sources have been characterized via alpha and gamma spectroscopy of the decay radiation obtained directly from the sources and from alpha-recoils embedded in implantation foils. These measurements revealed rather low $^{229}$Th recoil efficiencies of only a few percent. Although the low efficiency of one of the two sources can be attributed to its inherent thickness, the low recoil efficiency of the second, thinner source, was unexpected. Rutherford backscattering spectrometry (RBS) was performed to investigate the elemental composition as a function of depth revealing a contamination layer on top of the thin source. The combination of spectroscopic methods proves to be a useful approach in the assessment of alpha recoil source performance in general.
The origin of fluorine is a widely debated issue. Nevertheless, the ^{15}N({alpha},{gamma})^{19}F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the DC component and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV. Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is used to determine their widths in the {alpha} and {gamma} channels. We show that a direct measurement of the cross section of the ^{15}N({alpha},{gamma})^{19}F reaction can be successfully obtained with the Recoil Separator ERNA, and the widths {Gamma}_{gamma} and {Gamma}_{alpha} of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance {Gamma}_{alpha} . The revision of the widths of the two more relevant broad resonances in the 15N({alpha},{gamma})19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is dominated by the uncertainties affecting the Direct Capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.
Cross sections for production of 6He, 6Li, 7Li, and 7Be in the alpha+alpha reaction were measured at bombarding energies of 159.3, 279.6, and 619.8 MeV, and are found to decrease rapidly with increasing energy. These cross sections are essential for the calculation of the rate of nucleosynthesis of the lithium isotopes in the cosmic rays and thereby play a key role in our understanding of the synthesis of Li, Be, and B. The results for 6Li differ significantly from the tabulated values commonly used in cosmic-ray production calculations and lead to lower production of 6Li.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا