ﻻ يوجد ملخص باللغة العربية
We report experiment and theory on an ambipolar gate-controlled Si-vacuum field effect transistor (FET) where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with the peak electron mobility ($sim 18$ m$^2$/Vs) being roughly 20 times larger than the peak hole mobility (in the same sample). Our theory explains the data well using RPA screening of background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the strong temperature dependence of the effective screened disorder.
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resist
Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional which-layer degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton conden
The two-dimensional (2D) metal PtCoO$_2$ is renowned for the lowest room temperature resistivity among all oxides, close to that of the top two materials Ag and Cu. In addition, we theoretically predict a strong intrinsic spin Hall effect. This origi
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a
Integrating negative capacitance (NC) into the field-effect transistors promises to break fundamental limits of power dissipation known as Boltzmann tyranny. However, realization of the stable static negative capacitance in the non-transient regime w