ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher order operator splitting Fourier spectral methods for the Allen-Cahn equation

282   0   0.0 ( 0 )
 نشر من قبل June-Yub Lee
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Allen-Cahn equation is solved numerically by operator splitting Fourier spectral methods. The basic idea of the operator splitting method is to decompose the original problem into sub-equations and compose the approximate solution of the original equation using the solutions of the subproblems. Unlike the first and the second order methods, each of the heat and the free-energy evolution operators has at least one backward evaluation in higher order methods. We investigate the effect of negative time steps on a general form of third order schemes and suggest three third order methods for better stability and accuracy. Two fourth order methods are also presented. The traveling wave solution and a spinodal decomposition problem are used to demonstrate numerical properties and the order of convergence of the proposed methods.



قيم البحث

اقرأ أيضاً

Hydrodynamics coupled phase field models have intricate difficulties to solve numerically as they feature high nonlinearity and great complexity in coupling. In this paper, we propose two second order, linear, unconditionally stable decoupling method s based on the Crank--Nicolson leap-frog time discretization for solving the Allen--Cahn--Navier--Stokes (ACNS) phase field model of two-phase incompressible flows. The ACNS system is decoupled via the artificial compression method and a splitting approach by introducing an exponential scalar auxiliary variable. We prove both algorithms are unconditionally long time stable. Numerical examples are provided to verify the convergence rate and unconditional stability.
A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invarian t energy quadratization and scalar auxiliary variable approaches with the recent L1$^{+}$ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implement. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.
137 - Dianming Hou , Chuanju Xu 2021
In this paper, we propose and analyze a time-stepping method for the time fractional Allen-Cahn equation. The key property of the proposed method is its unconditional stability for general meshes, including the graded mesh commonly used for this type of equations. The unconditional stability is proved through establishing a discrete nonlocal free energy dispassion law, which is also true for the continuous problem. The main idea used in the analysis is to split the time fractional derivative into two parts: a local part and a history part, which are discretized by the well known L1, L1-CN, and $L1^{+}$-CN schemes. Then an extended auxiliary variable approach is used to deal with the nonlinear and history term. The main contributions of the paper are: First, it is found that the time fractional Allen-Chan equation is a dissipative system related to a nonlocal free energy. Second, we construct efficient time stepping schemes satisfying the same dissipation law at the discrete level. In particular, we prove that the proposed schemes are unconditionally stable for quite general meshes. Finally, the efficiency of the proposed method is verified by a series of numerical experiments.
An accurate description of 2-D quantum transport in a double-gate metal oxide semiconductor filed effect transistor (dgMOSFET) requires a high-resolution solver to a coupled system of the 4-D Wigner equation and 2-D Poisson equation. In this paper, w e propose an operator splitting spectral method to evolve such Wigner-Poisson system in 4-D phase space with high accuracy. After an operator splitting of the Wigner equation, the resulting two sub-equations can be solved analytically with spectral approximation in phase space. Meanwhile, we adopt a Chebyshev spectral method to solve the Poisson equation. Spectral convergence in phase space and a fourth-order accuracy in time are both numerically verified. Finally, we apply the proposed solver into simulating dgMOSFET, develop the steady states from long-time simulations and obtain numerically converged current-voltage (I-V) curves.
98 - Yuya Suzuki , Dirk Nuyens 2019
In this paper, we propose a numerical method to approximate the solution of the time-dependent Schrodinger equation with periodic boundary condition in a high-dimensional setting. We discretize space by using the Fourier pseudo-spectral method on ran k-$1$ lattice points, and then discretize time by using a higher-order exponential operator splitting method. In this scheme the convergence rate of the time discretization depends on properties of the spatial discretization. We prove that the proposed method, using rank-$1$ lattice points in space, allows to obtain higher-order time convergence, and, additionally, that the necessary condition on the space discretization can be independent of the problem dimension $d$. We illustrate our method by numerical results from 2 to 8 dimensions which show that such higher-order convergence can really be obtained in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا