ﻻ يوجد ملخص باللغة العربية
Based on a critical analysis of the experimental coercive properties, general considerations on the reversal mechanisms in RFeB magnets are recalled. By plotting together the experimental parameters obtained in various magnets, common features of the reversal processes are demonstrated. Modeling provides an almost quantitative description of coercivity in these materials and permits connecting the defect characteristic properties to reversal mechanisms.
Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room tempe
The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure without any structural defects and without any soft magnet
Magnetic coercivity is often viewed to be lower in alloys with negligible (or zero) values of the anisotropy constant. However, this explains little about the dramatic drop in coercivity in FeNi alloys at a non-zero anisotropy value. Here, we develop
We report on theoretical investigation of the magnetization reversal in two-dimensional arrays of ferromagnetic nano-particles with parameters of cobalt. The system was optimized for achieving the lowest coercivity in an array of particles located in
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500o