ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Coding with Earth Movers Distance for Multi-Instance Histogram Representation

214   0   0.0 ( 0 )
 نشر من قبل Jim Jing-Yan Wang
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Sparse coding (Sc) has been studied very well as a powerful data representation method. It attempts to represent the feature vector of a data sample by reconstructing it as the sparse linear combination of some basic elements, and a $L_2$ norm distance function is usually used as the loss function for the reconstruction error. In this paper, we investigate using Sc as the representation method within multi-instance learning framework, where a sample is given as a bag of instances, and further represented as a histogram of the quantized instances. We argue that for the data type of histogram, using $L_2$ norm distance is not suitable, and propose to use the earth movers distance (EMD) instead of $L_2$ norm distance as a measure of the reconstruction error. By minimizing the EMD between the histogram of a sample and the its reconstruction from some basic histograms, a novel sparse coding method is developed, which is refereed as SC-EMD. We evaluate its performances as a histogram representation method in tow multi-instance learning problems --- abnormal image detection in wireless capsule endoscopy videos, and protein binding site retrieval. The encouraging results demonstrate the advantages of the new method over the traditional method using $L_2$ norm distance.



قيم البحث

اقرأ أيضاً

While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universa l unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.
131 - Yaqing Wang , James T. Kwok , 2019
Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we p ropose a general CSC model capable of dealing with complicated unknown noise. The noise is now modeled by Gaussian mixture model, which can approximate any continuous probability density function. We use the expectation-maximization algorithm to solve the problem and design an efficient method for the weighted CSC problem in maximization step. The crux is to speed up the convolution in the frequency domain while keeping the other computation involving weight matrix in the spatial domain. Besides, we simultaneously update the dictionary and codes by nonconvex accelerated proximal gradient algorithm without bringing in extra alternating loops. The resultant method obtains comparable time and space complexity compared with existing CSC methods. Extensive experiments on synthetic and real noisy biomedical data sets validate that our method can model noise effectively and obtain high-quality filters and representation.
108 - Peihua Li 2010
Contour tracking in adverse environments is a challenging problem due to cluttered background, illumination variation, occlusion, and noise, among others. This paper presents a robust contour tracking method by contributing to some of the key issues involved, including (a) a region functional formulation and its optimization; (b) design of a robust and effective feature; and (c) development of an integrated tracking algorithm. First, we formulate a region functional based on robust Earth Movers distance (EMD) with kernel density for distribution modeling, and propose a two-phase method for its optimization. In the first phase, letting the candidate contour be fixed, we express EMD as the transportation problem and solve it by the simplex algorithm. Next, using the theory of shape derivative, we make a perturbation analysis of the contour around the best solution to the transportation problem. This leads to a partial differential equation (PDE) that governs the contour evolution. Second, we design a novel and effective feature for tracking applications. We propose a dimensionality reduction method by tensor decomposition, achieving a low-dimensional description of SIFT features called Tensor-SIFT for characterizing local image region properties. Applicable to both color and gray-level images, Tensor-SIFT is very distinctive, insensitive to illumination changes, and noise. Finally, we develop an integrated algorithm that combines various techniques of the simplex algorithm, narrow-band level set and fast marching algorithms. Particularly, we introduce an inter-frame initialization method and a stopping criterion for the termination of PDE iteration. Experiments in challenging image sequences show that the proposed work has promising performance.
The word movers distance (WMD) is a fundamental technique for measuring the similarity of two documents. As the crux of WMD, it can take advantage of the underlying geometry of the word space by employing an optimal transport formulation. The origina l study on WMD reported that WMD outperforms classical baselines such as bag-of-words (BOW) and TF-IDF by significant margins in various datasets. In this paper, we point out that the evaluation in the original study could be misleading. We re-evaluate the performances of WMD and the classical baselines and find that the classical baselines are competitive with WMD if we employ an appropriate preprocessing, i.e., L1 normalization. However, this result is not intuitive. WMD should be superior to BOW because WMD can take the underlying geometry into account, whereas BOW cannot. Our analysis shows that this is due to the high-dimensional nature of the underlying metric. We find that WMD in high-dimensional spaces behaves more similarly to BOW than in low-dimensional spaces due to the curse of dimensionality.
Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. I n this work, we strike a better balance by considering a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate. We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear classifier, and show an interesting interplay between the expressivity and stability of the (supervised) representation map and a notion of margin in the feature space. We bound the robust risk (to $ell_2$-bounded perturbations) of hypotheses parameterized by dictionaries that achieve a mild encoder gap on training data. Furthermore, we provide a robustness certificate for end-to-end classification. We demonstrate the applicability of our analysis by computing certified accuracy on real data, and compare with other alternatives for certified robustness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا