ﻻ يوجد ملخص باللغة العربية
The Berry phase (BP) in a quantized light field demonstrated more than a decade ago (Phys. Rev. Lett. 89, 220404) has attracted considerable attentions, since it plays an important role in the cavity quantum electrodynamics. However, it is argued in a recent paper ( Phys. Rev. Lett. 108, 033601) that such a BP is just due to the rotating wave approximation (RWA) and the relevant BP should vanish beyond this approximation. Based on a consistent analysis we conclude in this letter that the BP in a generic Rabi model actually exists, no matter whether the RWA is applied. The existence of BP is also generalized to a three-level atom in the quantized cavity field.
We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly re
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal va
We present a numerical method to approximate the long-time asymptotic solution $rho_infty(t)$ to the Lindblad master equation for an open quantum system under the influence of an external drive. The proposed scheme uses perturbation theory to rank in
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d
Two noninteracting atoms, initially entangled in Bell states, are coupled to a one-mode cavity. Based on the reduced non-perturbative quantum master equation, the entanglement evolution of the two atoms with decay is investigated beyond rotating-wave