ﻻ يوجد ملخص باللغة العربية
We consider Markov chain Monte Carlo methods for calculating conditional p values of statistical models for count data arising in Box-Behnken designs. The statistical model we consider is a discrete version of the first-order model in the response surface methodology. For our models, the Markov basis, a key notion to construct a connected Markov chain on a given sample space, is characterized as generators of the toric ideals for the centrally symmetric configurations of root system D_n. We show the structure of the Groebner bases for these cases. A numerical example for an imaginary data set is given.
It is known that a Markov basis of the binary graph model of a graph $G$ corresponds to a set of binomial generators of cut ideals $I_{widehat{G}}$ of the suspension $widehat{G}$ of $G$. In this paper, we give another application of cut ideals to sta
Markov chain Monte Carlo (MCMC) produces a correlated sample for estimating expectations with respect to a target distribution. A fundamental question is when should sampling stop so that we have good estimates of the desired quantities? The key to a
This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covarianc
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not
Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic n