ﻻ يوجد ملخص باللغة العربية
We consider resonant scatterers with large scattering cross-sections in graphene that are produced by a gated disk or a vacancy, and show that a gated ring can be engineered to produce an efficient electron cloak. We also demonstrate that this same scheme can be applied to tune the direction of electron flow. Our analysis is based on a partial-wave expansion of the electronic wave-functions in the continuum approximation, described by the Dirac equation. Using a symmetrized version of the massless Dirac equation, we derive a general condition for the cloaking of a scatterer by a potential with radial symmetry. We also perform tight-binding calculations to show that our findings are robust against the presence of disorder in the gate potential.
We consider spin-dependent scatterers with large scattering cross-sections in graphene -a Zeeman-like and an intrinsic spin-orbit coupling impurity- and show that a gated ring around them can be engineered to produce an effcient control of the spin d
Controlling energy flows in solids through switchable electron-lattice cooling can grant access to a range of interesting and potentially useful energy transport phenomena. Here we discuss a unique switchable electron-lattice cooling mechanism arisin
We present a hydrodynamic theory for electron-hole magnetotransport in graphene incorporating carrier-population imbalance, energy, and momentum relaxation processes. We focus on the electric response and find that the carrier and energy imbalance re
The ability to control the strength of interaction is essential for studying quantum phenomena emerging from a system of correlated fermions. For example, the isotope effect illustrates the effect of electron-phonon coupling on superconductivity, pro
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scatterin