ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic Relationships for Bulk Crystalline and Liquid Phases in the Phase-Field Crystal Model

103   0   0.0 ( 0 )
 نشر من قبل Victor Chan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present thermodynamic relationships between the free energy of the phase-field crystal (PFC) model and thermodynamic state variables for bulk phases under hydrostatic pressure. This relationship is derived based on the thermodynamic formalism for crystalline solids of Larche and Cahn [Larche and Cahn, Acta Metallurgica, Vol. 21, 1051 (1973)]. We apply the relationship to examine the thermodynamic processes associated with varying the input parameters of the PFC model: temperature, lattice spacing, and the average value of the PFC order parameter, $bar{n}$. The equilibrium conditions between bulk crystalline solid and liquid phases are imposed on the thermodynamic relationships for the PFC model to obtain a procedure for determining solid-liquid phase coexistence. The resulting procedure is found to be in agreement with the method commonly used in the PFC community, justifying the use of the common-tangent construction to determine solid-liquid phase coexistence in the PFC model. Finally, we apply the procedure to an eighth-order-fit (EOF) PFC model that has been parameterized to body-centered-cubic ($bcc$) Fe [Jaatinen et al., Physical Review E 80, 031602 (2009)] to demonstrate the procedure as well as to develop physical intuition about the PFC input parameters. We demonstrate that the EOF-PFC model parameterization does not predict stable $bcc$ structures with positive vacancy densities. This result suggests an alternative parameterization of the PFC model, which requires the primary peak position of the two-body direct correlation function to shift as a function of $bar{n}$.



قيم البحث

اقرأ أيضاً

A two dimensional crystalline layer is found at the surface of the liquid eutectic Au$_{82}$Si$_{18}$ alloy above its melting point $T_M=359 ^{circ}$C. Underlying this crystalline layer we find a layered structure, 6-7 atomic layers thick. This surfa ce layer undergoes a first-order solid-solid phase transition occurring at $371 ^{circ}$C. The crystalline phase observed for T$>$371 $^{circ}$C is stable up to at least 430 $^{circ}$C. Grazing Incidence X-ray Diffraction data at T$>$371 $^{circ}$C imply lateral order comprising two coexisting phases of different oblique unit cells, in stark contrast with the single phase with a rectangular unit cell found for low-temperature crystalline phase $359 ^{circ}$C$<T<371 ^{circ}$C.
The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process . The evolution of these structures during the lifetime of the cell remains poorly understood. In this paper, a phase-field simulation framework is proposed, handling liquid-liquid demixing and polycrystalline growth at the same time in order to investigate the evolution of crystalline immiscible binary systems. We find that initially, the nuclei trigger the spinodal decomposition, while the growing crystals quench the phase coarsening in the amorphous mixture. Conversely, the separated liquid phases guide the crystal growth along the domains of high concentration. It is also demonstrated that with a higher crystallization rate, in the final morphology, single crystals are more structured and form percolating pathways for each material with smaller lateral dimensions.
We present a review on the study of metastable silicon, primarily focusing mainly on the aspects of liquid-liquid transition, critical point and phase behaviour, structural and dynamic properties of liquid phase as well as crystal nucleation. We begi n with an extensive survey of the investigations of liquid silicon pursued over three decades, with salient experimental, theoretical and simulation results. Following which we present various scenarios put forward to rationalize the density and related anomalies often observed in water and other network forming liquids. After which we present the more recent investigations (both simulation and experimental works) of the phase behavior of Silicon. Since a significant part of metastable silicon work is on a classical empirical potential an important question to address is the reliability of this potential in describing the behavior of silicon. To provide a critical assessment of the applicability of classical simulation results to real silicon we present a comparison of the structural, dynamical, and thermodynamic quantities obtained from the SW potential with those from ab initio simulations and with available experimental data. We also discuss the sensitivity of the thermodynamic properties to model parameters.
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perf ectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.
Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new sys tems is still performed by trial and error. It has been speculated that some sort of confusion during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantifying confusion and demonstrate its validity by detailed experiments on two well-known glass forming alloy systems. With the insight provided by these results, we develop a robust model for predicting glass formation ability based on the spectral decomposition of geometrical and energetic features of crystalline phases calculated ab-initio in the AFLOW high throughput framework. Our findings indicate that the formation of metallic glass phases could be a much more common phenomenon than currently estimated, with more than 17% of binary alloy systems being potential glass formers. Our approach is capable of pinpointing favorable compositions, overcoming a major bottleneck hindering the discovery of new materials. Hence, it is demonstrated that smart descriptors, based solely on the energetics and structure of competing crystalline phases calculated from first-principles and available in online databases, others the sought-after key for accelerated discovery of novel metallic glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا