ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic ground state of superconducting Eu(Fe0.88Ir0.12)2As2: A combined neutron diffraction and first-principles calculation study

686   0   0.0 ( 0 )
 نشر من قبل Wentao Jin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic order of the localized Eu$^{2+}$ spins in optimally-doped Eu(Fe$_{1-x}$Ir$_{x}$)$_{2}$As$_{2}$ ($mathit{x}$ = 0.12) with superconducting transition temperature $mathit{T_{SC}}$ = 22 K was investigated by single-crystal neutron diffraction. The Eu$^{2+}$ moments were found to be ferromagnetically aligned along the $mathit{c}$-direction with an ordered moment of 7.0(1) $mu_{B}$ well below the magnetic phase transition temperature $mathit{T_{C}}$ = 17 K. No evidence of the tetragonal-to-orthorhombic structural phase transition was found in this compound within the experimental uncertainty, in which the spin-density-wave (SDW) order of the Fe sublattice is supposed to be completely suppressed and the superconductivity gets fully developed. The ferromagnetic groud state of the Eu$^{2+}$ spins in Eu(Fe$_{0.88}$Ir$_{0.12}$)$_{2}$As$_{2}$ was supported by the first-principles density functional calculation. In addition, comparison of the electronic structure calculations between Eu(Fe$_{0.875}$Ir$_{0.125}$)$_{2}$As$_{2}$ and the parent compound EuFe$_{2}$As$_{2}$ indicates stronger hybridization and more expanded bandwith due to the Ir substitution, which together with the introduction of electrons might work against the Fe-SDW in favor of the superconductivity.



قيم البحث

اقرأ أيضاً

112 - W. T. Jin , S. Nandi , Y. Xiao 2013
The magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 is unambiguously determined by single-crystal neutron diffraction. A long-range ferromagnetic order of the Eu2+ moments along the c-direction is revealed below the magnetic phase transiti on temperature Tc = 17 K. In addition, the antiferromagnetism of the Fe2+ moments still survives and the tetragonal-to-orthorhombic structural phase transition is also observed, although the transition temperatures of the Fe-spin density wave (SDW) order and the structural phase transition are significantly suppressed to Tn = 70 K and Ts = 90 K, respectively, compared to the parent compound EuFe2As2.We present the microscopic evidences for the coexistence of the Eu-ferromagnetism (FM) and the Fe-SDW in the superconducting crystal. The superconductivity (SC) competes with the Fe-SDW in Eu(Fe0.82Co0.18)2As2.Moreover, the comparison between Eu(Fe1-xCox)2As2 and Ba(Fe1-xCox)2As2 indicates a considerable influence of the rare-earth element Eu on the magnetism of the Fe sublattice.
Results of muon spin relaxation ($mu$SR) and neutron powder diffraction measurements on a reentrant superconductor Eu(Fe$_{0.86}$Ir$_{0.14}$)$_2$As$_2$ are presented. Eu(Fe$_{0.86}$Ir$_{0.14}$)$_2$As$_2$ exhibits superconductivity at $T_{rm c,on} app rox 22.5$~K competing with long range ordered Eu$^{+2}$ moments below $approx 18$ K. A reentrant behavior (manifested by nonzero resistivity in the temperature range 10--17.5 K) results from an exquisite competition between the superconductivity and magnetic order. The zero field $mu$SR data confirm the long range magnetic ordering below $T_{rm Eu} = 18.7(2)$ K. The transition temperature is found to increase with increasing magnetic field in longitudinal field $mu$SR which along with the neutron diffraction results, suggests the transition to be ferromagnetic. The neutron diffraction data reveal a clear presence of magnetic Bragg peaks below $T_{rm Eu}$ which could be indexed with propagation vector k = (0, 0, 0), confirming a long range magnetic ordering in agreement with $mu$SR data. Our analysis of the magnetic structure reveals an ordered magnetic moment of $6.29(5),mu_{rm B}$ (at 1.8 K) on the Eu atoms and they form a ferromagnetic structure with moments aligned along the $c$-axis. No change in the magnetic structure is observed in the reentrant or superconducting phases and the magnetic structure remains same for 1.8 K $leq T leq T_{rm Eu}$. No clear evidence of structural transition or Fe moment ordering was found.
We use polarised neutron diffraction to study the induced magnetization density of near optimally doped Ba(Fe0.935Co0.065)2As2 (T_C=24 K) as a function of magnetic field (1<H<9 T) and temperature (2<T<300 K). The T-dependence of the induced moment in the superconducting state is consistent with the Yosida function, characteristic of spin-singlet pairing. The induced moment is proportional to applied field for H < 9 T ~ Hc2/6. In addition to the Yosida spin-susceptibility, our results reveal a large zero-field contribution M (H=>0,T=>0)/H ~ 2/3 chi_{normal} which does not scale with the field or number of vortices and is most likely due to the van Vleck susceptibility. Magnetic structure factors derived from the polarization dependence of 15 Bragg reflections were used to make a maximum entropy reconstruction of the induced magnetization distribution in real space. The magnetization is confined to the Fe atoms and the measured density distribution is in good agreement with LAPW band structure calculations which suggest that the relevant bands near the Fermi energy are of the d_{xz/yz} and d_{xy} type.
The heavy fermion superconductor UPt$_3$ is thought to have odd-parity, a state for which the temperature dependence of the spin susceptibility is an important signature. In order to address conflicting reports from two different experiments, the NMR Knight shift and measurements of the anisotropy of the upper critical field, we have measured the bulk susceptibility in a high quality single crystal using polarized-neutron diffraction. A temperature independent susceptibility was observed for $H||a$ through the transitions between the normal state and the superconducting A-, B- and C-phases, consistent with odd-parity, spin-triplet superconductivity.
We theoretically study superconductivity in UTe$_2$, which is a recently-discovered strong candidate for an odd-parity spin-triplet superconductor. Theoretical studies for this compound faced difficulty because first-principles calculations predict a n insulating electronic state, incompatible with superconducting instability. To overcome this problem, we take into account electron correlation effects by a GGA$+U$ method and show the insulator-metal transition by Coulomb interaction. Using Fermi surfaces obtained as a function of $U$, we clarify topological properties of possible superconducting states. Fermi surface formulas for the three-dimensional winding number and three two-dimensional $mathbb{Z}_2$ numbers indicate topological superconductivity at an intermediate $U$ for all the odd-parity pairing symmetry in the $Immm$ space group. Symmetry and topology of superconducting gap node are analyzed and the gap structure of UTe$_2$ is predicted. Topologically protected low-energy excitations are highlighted, and experiments by bulk and surface probes are proposed to link Fermi surfaces and pairing symmetry. Based on the results, we also discuss multiple superconducting phases under magnetic fields, which were implied by recent experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا