ترغب بنشر مسار تعليمي؟ اضغط هنا

A Measurement of Diffusion in 47 Tucanae

398   0   0.0 ( 0 )
 نشر من قبل Jeremy S. Heyl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using images from the Hubble Space Telescope Wide-Field Camera 3, we measure the rate of diffusion of stars through the core of the globular cluster 47 Tucanae using a sample of young white dwarfs identified in these observations. This is the first direct measurement of diffusion due to gravitational relaxation. We find that the diffusion rate $kappaapprox 10-13$ arcsecond$^2$ Myr$^{-1}$ is consistent with theoretical estimates of the relaxation time in the core of 47 Tucanae of about 70 Myr.



قيم البحث

اقرأ أيضاً

By examining the diffusion of young white dwarfs through the core of the globular cluster 47 Tucanae, we estimate the time when the progenitor star lost the bulk of its mass to become a white dwarf. According to stellar evolution models of the white- dwarf progenitors in 47 Tucanae, we find this epoch to coincide approximately with the star ascending the asymptotic giant branch ($3.0 pm 8.1$ Myr before the tip of the AGB) and more than ninety million years after the helium flash (with ninety-percent confidence). From the diffusion of the young white dwarfs we can exclude the hypothesis that the bulk of the mass loss occurs on the red-giant branch at the four-sigma level. Furthermore, we find that the radial distribution of horizontal branch stars is consistent with that of the red-giant stars and upper-main-sequence stars and inconsistent with the loss of more than 0.2 solar masses on the red-giant branch at the six-sigma level.
505 - Christian Knigge 2008
We present far-UV spectroscopy obtained with HST for 48 blue objects in the core of 47 Tuc. Based on their position in a FUV-optical colour-magnitude diagram, these were expected to include cataclysmic variables (CVs), blue stragglers (BSs), white dw arfs (WDs) and other exotic objects. For a subset of these sources, we also construct FUV-NIR SEDs. Based on our analysis of this extensive data set, we report the following main results. (1) We spectroscopically confirm 3 previously known or suspected CVs via the detection of emission lines and find new evidence for dwarf nova eruptions in two of these. (2) Only one other source in our spectroscopic sample exhibits marginal evidence for line emission, but predicted and observed CV numbers still agree to within a factor of about 2-3. (3) We have discovered a hot (T_eff = 8700 K), low-mass (M = 0.05 M_sun) secondary star in a previously known 0.8 day binary system. This exotic object is probably the remnant of a subgiant that has been stripped of its envelope and may represent the ``smoking gun of a recent dynamical encounter. (4) We have found a Helium WD, the second to be optically detected in 47 Tuc, and the first outside a millisecond-pulsar system. (5) We have discovered a BS-WD binary system, the first known in any globular cluster. (6) We have found two additional candidate WD binary systems with putative main sequence and subgiant companions. (7) We estimate the WD binary fraction in the core of 47 Tuc to be 15 +17/-9 (stat) +8/-7 (sys). (8) One BS in our sample may exceed twice the cluster turn-off mass, but the uncertainties are large. Taken as a whole, our study illustrates the wide range of stellar exotica that are lurking in the cores of GCs, most of which are likely to have undergone significant dynamical encounters. [abridged]
We have constructed the Spectral Energy Distributions (SEDs) of a sample of Blue Straggler Stars (BSSs) in the core of the globular cluster 47 Tucanae, taking advantage of the large set of high resolution images, ranging from the ultraviolet to the n ear infrared, obtained with the ACS/HRC camera of the Hubble Space Telescope. Our final BSS sample consists of 22 objects, spanning the whole color and magnitude extension of the BSS sequence in 47 Tucanae. We fitted the BSS broadband SEDs with models to derive temperature, surface gravity, radius, luminosity and mass. We show that BSSs indeed define a mass sequence, where the mass increases for increasing luminosity. Interestingly, the BSS masses estimates from the SED fitting turn out to be comparable to those derived from the projection of the stellar position in the color-magnitude diagram onto standard star evolutionary tracks. We compare our results with previous, direct mass estimates of a few BSSs in 47 Tucanae. We also find a couple of supermassive BSS candidates, i.e., BSSs with a mass larger than twice the turn-off mass, the formation of which must have involved more than two progenitors.
The Bright Star in the globular cluster 47 Tucanae (NGC 104) is a post-AGB star of spectral type B8 III. The ultraviolet spectra of late-B stars exhibit a myriad of absorption features, many due to species unobservable from the ground. The Bright Sta r thus represents a unique window into the chemistry of 47 Tuc. We have analyzed observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE), the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope, and the MIKE Spectrograph on the Magellan Telescope. By fitting these data with synthetic spectra, we determine various stellar parameters (T_eff = 10,850 +/- 250 K, log g = 2.20 +/- 0.13) and the photospheric abundances of 26 elements, including Ne, P, Cl, Ga, Pd, In, Sn, Hg, and Pb, which have not previously been published for this cluster. Abundances of intermediate-mass elements (Mg through Ga) generally scale with Fe, while the heaviest elements (Pd through Pb) have roughly solar abundances. Its low C/O ratio indicates that the star did not undergo third dredge-up and suggests that its heavy elements were made by a previous generation of stars. If so, this pattern should be present throughout the cluster, not just in this star. Stellar-evolution models suggest that the Bright Star is powered by a He-burning shell, having left the AGB during or immediately after a thermal pulse. Its mass (0.54 +/- 0.16 M_sun) implies that single stars in 47 Tuc lose 0.1--0.2 M_sun on the AGB, only slightly less than they lose on the RGB.
99 - J. Heyl , I. Caiazzo , H. Richer 2017
Multi-epoch observations with ACS and WFC3 on HST provide a unique and comprehensive probe of stellar dynamics within 47 Tucanae. We confront analytic models of the globular cluster with the observed stellar proper motions that probe along the main s equence from just above 0.8 to 0.1M$_odot$ as well as white dwarfs younger than one gigayear. One field lies just beyond the half-light radius where dynamical models (eg lowered Maxwellian distributions) make robust predictions for the stellar proper motions. The observed proper motions in this outer field show evidence for anisotropy in the velocity distribution as well as skewness; the latter is evidence of rotation. The measured velocity dispersions and surface brightness distributions agree in detail with a rotating, anisotropic model of the stellar distribution function with mild dependence of the proper-motion dispersion on mass. However, the best fitting models under-predict the rotation and skewness of the stellar velocities. In the second field, centered on the core of the cluster, the mass segregation in proper motion is much stronger. Nevertheless the model developed in the outer field can be extended inward by taking this mass segregation into account in a heuristic fashion. The proper motions of the main-sequence stars yield a mass estimate of the cluster of $1.31 pm 0.02 times 10^6 mathrm{M}_odot$ at a distance of 4.7 kpc. By comparing the proper motions of a sample of giant and sub-giant stars with the observed radial velocities we estimate the distance to the cluster kinematically to be $4.29 pm 0.47$ kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا