ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Observation of the Fermi Cygnus Cocoon: Search for a Signature of Young Cosmic-Ray Electrons

125   0   0.0 ( 0 )
 نشر من قبل Tsunefumi Mizuno
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of Galactic cosmic rays remains unconfirmed, but promising candidates for their sources are found in star-forming regions. We report a series of X-ray observations, with Suzaku, toward the nearby star-forming region of Cygnus X. They aim at comparing diffuse X-ray emissions on and off the $gamma$-ray cocoon of hard cosmic rays revealed by Fermi LAT. After excluding point sources and small-scale structures and subtracting the non-X-ray and cosmic X-ray backgrounds, the 2--10~keV X-ray intensity distribution is found to monotonically decrease with increasing Galactic latitude. This indicates that most of the extended emission detected by Suzaku originates from the Galactic ridge. In two observations, we derive upper limits of $3.4 times 10^{-8}~{rm erg~s^{-1}~cm^{-2}~sr^{-1}}$ and $1.3 times 10^{-8}~{rm erg~s^{-1}~cm^{-2}~sr^{-1}}$ to X-ray emission in the 2--10 keV range from the gamma-ray cocoon. These limits exclude the presence of cosmic-ray electrons with energies above about 50 TeV at a flux level capable of explaining the gamma-ray spectrum. They are consistent with the emission cut-off observed near a TeV in gamma rays. The properties of Galactic ridge and local diffuse X-rays are also discussed.



قيم البحث

اقرأ أيضاً

We use new and archival Chandra observations of Cygnus A, totalling $sim$1.9 Ms, to investigate the distribution and temperature structure of gas lying within the projected extent of the cocoon shock and exhibiting a rib-like structure. We confirm th at the X-rays are dominated by thermal emission with an average temperature of around 4 keV, and have discovered an asymmetry in the temperature gradient, with the southwestern part of the gas cooler than the rest by up to 2 keV. Pressure estimates suggest that the gas is a coherent structure of single origin located inside the cocoon, with a mass of roughly $2times10^{10} M_{odot}$. We conclude that the gas is debris resulting from disintegration of the cool core of the Cygnus A cluster after the passage of the jet during the early stages of the current epoch of activity. The 4 keV gas now lies on the central inside surface of the hotter cocoon rim. The temperature gradient could result from an offset between the centre of the cluster core and the Cygnus A host galaxy at the switch-on of current radio activity.
We use 7 years of electron and positron Fermi-LAT data to search for a possible excess in the direction of the Sun in the energy range from 42 GeV to 2 TeV. In the absence of a positive signal we derive flux upper limits which we use to constrain two different dark matter (DM) models producing $e^+ e^-$ fluxes from the Sun. In the first case we consider DM model being captured by the Sun due to elastic scattering and annihilation into $e^+ e^-$ pairs via a long-lived light mediator that can escape the Sun. In the second case we consider instead a model where DM density is enhanced around the Sun through inelastic scattering and the DM annihilates directly into $e^+ e^-$ pairs. In both cases we perform an optimal analysis, searching specifically for the energy spectrum expected in each case, i.e., a box-like shaped and line-like shaped spectrum respectively. No significant signal is found and we can place limits on the spin-independent cross-section in the range from $10^{-46}~cm^2$ to $10^{-44}~cm^2$ and on the spin-dependent cross-section in the range from $10^{-43}~cm^2$ to $10^{-41}~cm^2$. In the case of inelastic scattering the limits on the cross-section are in the range from $10^{-43}~cm^2$ to $10^{-41}~cm^2$. The limits depend on the life time of the mediator (elastic case) and on the mass splitting value (inelastic case), as well as on the assumptions made for the size of the deflections of electrons and positrons in the interplanetary magnetic field.
Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way. Traditionally, it has been presumed that supernova remnants were the main source of very-high-energy cosmic rays but theoretically it is difficult to get prot ons to PeV energies and observationally there simply is no evidence to support the remnants as sources of hadrons with energies above a few tens of TeV. One possible source of protons with those energies is the Galactic Center region. Here we report observations of 1-100 TeV gamma rays coming from the Cygnus Cocoon, which is a superbubble surrounding a region of OB2 massive star formation. These gamma rays are likely produced by 10-1000 TeV freshly accelerated CRs originating from the enclosed star forming region Cygnus OB2. Hitherto it was not known that such regions could accelerate particles to these energies. The measured flux is likely originated by hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.
172 - A. Weinstein 2013
The study of $gamma$-ray emission from galactic sources such as supernova remnants (SNR) may provide key insights into their potential role as accelerators of cosmic rays up to the knee ($sim 10^{15}$ eV). The VERITAS Observatory is sensitive to gala ctic and extragalactic $gamma$-ray sources in the 100 GeV to 30 TeV energy range. We report here on VERITAS observations of the vicinity of the cocoon of freshly accelerated cosmic rays reported by Fermi, which lies between potential accelerators in the Cygnus OB2 association and the $gamma$-Cygni SNR. A particular focus is placed on the source VER J2019 +407 in $gamma$-Cygni.
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by $Fermi$-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from November 2007 to January 2013, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of $10^{circ}times 10^{circ}$, finding a source extension $sigma_{ext}$= 1$^{circ}$.8$pm$0$^{circ}$.5. The observed differential energy spectrum is $dN/dE =(2.5pm0.4) times 10^{-11}(E/1 TeV)^{-2.6pm0.3}$ photons cm$^{-2}$ s$^{-1}$ TeV$^{-1}$, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by $Fermi$-LAT, and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with Supernova Remnants indicates that the particle acceleration inside a superbubble is similar to that in a SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا