ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Numerical Cherenkov Instability Suppression in the Generalized PSTD PIC Algorithm

367   0   0.0 ( 0 )
 نشر من قبل Brendan Godfrey
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The family of generalized Pseudo-Spectral Time Domain (including the Pseudo-Spectral Analytical Time Domain) Particle-in-Cell algorithms offers substantial versatility for simulating particle beams and plasmas, and well written codes using these algorithms run reasonably fast. When simulating relativistic beams and streaming plasmas in multiple dimensions, they are, however, subject to the numerical Cherenkov instability. Previous studies have shown that instability growth rates can be reduced substantially by modifying slightly the transverse fields as seen by the streaming particles . Here, we offer an approach which completely eliminates the fundamental mode of the numerical Cherenkov instability while minimizing the transverse field corrections. The procedure, numerically computed residual growth rates (from weaker, higher order instability aliases), and comparisons with WARP simulations are presented. In some instances, there are no numerical instabilities whatsoever, at least in the linear regime.



قيم البحث

اقرأ أيضاً

A procedure for largely suppressing the numerical Cherenkov instability in finite difference time-domain (FDTD) particle-in-cell (PIC) simulations of cold, relativistic beams is derived, and residual growth rates computed and compared with WARP code simulation results. Sample laser-plasma acceleration simulation output is provided to further validate the new procedure.
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwells equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle be am simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper presents several approaches that, when combined with digital filtering, almost completely eliminate the numerical Cherenkov instability. The paper also investigates the numerical stability of the PSATD algorithm at low beam energies.
168 - Peicheng Yu 2014
When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electr omagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., $omega + 2pimu/Delta t=(k_1+ 2pi u_1/Delta x_1)v_0$, where $mu$ and $ u_1$ refer to the time and space aliases and the plasma is drifting relativistically at velocity $v_0$ in the $hat{1}$-direction. Recent studies have shown that an EM-PIC code which uses a spectral field solver and a low pass filter can eliminate the fastest growing modes of the NCI. Based on these studies a new spectral PIC code for studying laser wakefield acceleration (LWFA) in the Lorentz boosted frame was developed. However, we show that for parameters of relevance for LWFA simulations in the boosted frame, a relativistically drifting plasma is susceptible to a host of additional unstable modes with lower growth rates, and that these modes appear when the fastest growing unstable modes are filtered out. We show that these modes are most easily identified as the coupling between modes which are purely transverse (EM) and purely longitudinal (Langmuir) in the rest frame of the plasma for specific time and space aliases. We rewrite the dispersion relation of the drifting plasma for a general field solver and obtain analytic expressions for the location and growth rate for each unstable mode, i.e, for each time and space aliased resonances. We show for the spectral solver that when the fastest growing mode is eliminated a new mode at the fundamental resonance ($mu= u_1=0$) can be seen. (Please check the whole abstract in the paper).
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
Particle-In-Cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including e.g. laser-wakefield acceleration, when viewed in a Lorentz-boosted frame), but remain sometimes infeasible due to the well -known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا