The standard errors of the end-of-mission Gaia astrometry have been re-assessed after conclusion of the in-orbit commissioning phase of the mission. An analytical relation is provided for the parallax standard error as function of Gaia G magnitude (and V-I colour) which supersedes the pre-launch relation provided in de Bruijne (2012).
Gaia is the next astrometry mission of the European Space Agency (ESA), following up on the success of the Hipparcos mission. With a focal plane containing 106 CCD detectors, Gaia will survey the entire sky and repeatedly observe the brightest 1,000
million objects, down to 20th magnitude, during its 5-year lifetime. Gaias science data comprises absolute astrometry, broad-band photometry, and low-resolution spectro-photometry. Spectroscopic data with a resolving power of 11,500 will be obtained for the brightest 150 million sources, down to 17th magnitude. The thermo-mechanical stability of the spacecraft, combined with the selection of the L2 Lissajous point of the Sun-Earth/Moon system for operations, allows stellar parallaxes to be measured with standard errors less than 10 micro-arcsecond (muas) for stars brighter than 12th magnitude, 25 muas for stars at 15th magnitude, and 300 muas at magnitude 20. Photometric standard errors are in the milli-magnitude regime. The spectroscopic data allows the measurement of radial velocities with errors of 15 km/s at magnitude 17. Gaias primary science goal is to unravel the kinematical, dynamical, and chemical structure and evolution of the Milky Way. In addition, Gaias data will touch many other areas of science, e.g., stellar physics, solar-system bodies, fundamental physics, and exo-planets. The Gaia spacecraft is currently in the qualification and production phase. With a launch in 2013, the final catalogue is expected in 2021. The science community in Europe, organised in the Data Processing and Analysis Consortium (DPAC), is responsible for the processing of the data.
A tool for representation of the one-dimensional astrometric signal of Gaia is described and investigated in terms of fit discrepancy and astrometric performance with respect to number of parameters required. The proposed basis function is based on t
he aberration free response of the ideal telescope and its derivatives, weighted by the source spectral distribution. The influence of relative position of the detector pixel array with respect to the optical image is analysed, as well as the variation induced by the source spectral emission. The number of parameters required for micro-arcsec level consistency of the reconstructed function with the detected signal is found to be 11. Some considerations are devoted to the issue of calibration of the instrument response representation, taking into account the relevant aspects of source spectrum and focal plane sampling. Additional investigations and other applications are also suggested.
The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars.
Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaias unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellites data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data.
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i
nput data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the astrometry task. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G<14 mag) sources, 0.1 mas at G=17 mag, and 0.7 mas at G=20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas/yr, respectively. The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas/yr. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas/yr in proper motion are seen on small (<1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.
Since July 2014, the Gaia mission has been engaged in a high-spatial-resolution, time-resolved, precise, accurate astrometric, and photometric survey of the entire sky. Aims: We present the Gaia Science Alerts project, which has been in operation s
ince 1 June 2016. We describe the system which has been developed to enable the discovery and publication of transient photometric events as seen by Gaia. Methods: We outline the data handling, timings, and performances, and we describe the transient detection algorithms and filtering procedures needed to manage the high false alarm rate. We identify two classes of events: (1) sources which are new to Gaia and (2) Gaia sources which have undergone a significant brightening or fading. Validation of the Gaia transit astrometry and photometry was performed, followed by testing of the source environment to minimise contamination from Solar System objects, bright stars, and fainter near-neighbours. Results: We show that the Gaia Science Alerts project suffers from very low contamination, that is there are very few false-positives. We find that the external completeness for supernovae, $C_E=0.46$, is dominated by the Gaia scanning law and the requirement of detections from both fields-of-view. Where we have two or more scans the internal completeness is $C_I=0.79$ at 3 arcsec or larger from the centres of galaxies, but it drops closer in, especially within 1 arcsec. Conclusions: The per-transit photometry for Gaia transients is precise to 1 per cent at $G=13$, and 3 per cent at $G=19$. The per-transit astrometry is accurate to 55 milliarcseconds when compared to Gaia DR2. The Gaia Science Alerts project is one of the most homogeneous and productive transient surveys in operation, and it is the only survey which covers the whole sky at high spatial resolution (subarcsecond), including the Galactic plane and bulge.