ترغب بنشر مسار تعليمي؟ اضغط هنا

ANIR : Atacama Near-Infrared Camera for the 1.0-m miniTAO Telescope

221   0   0.0 ( 0 )
 نشر من قبل Masahiro Konishi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The camera provides a field of view of 5.1 $times$ 5.1 with a spatial resolution of 0.298 /pixel in the wavelength range of 0.95 to 2.4 $mu$m. Taking advantage of the dry site, the camera is capable of hydrogen Paschen-$alpha$ (Pa$alpha$, $lambda=$1.8751 $mu$m in air) narrow-band imaging observations, at which wavelength ground-based observations have been quite difficult due to deep atmospheric absorption mainly from water vapor. We have been successfully obtaining Pa$alpha$ images of Galactic objects and nearby galaxies since the first-light observation in 2009 with ANIR. The throughputs at the narrow-band filters ($N1875$, $N191$) including the atmospheric absorption show larger dispersion (~10%) than those at broad-band filters (a few %), indicating that they are affected by temporal fluctuations in Precipitable Water Vapor (PWV) above the site. We evaluate the PWV content via the atmospheric transmittance at the narrow-band filters, and derive that the median and the dispersion of the distribution of the PWV are 0.40+/-0.30 mm for $N1875$ and 0.37+/-0.21 mm for $N191$, which are remarkably smaller (49+/-38% for $N1875$ and 59+/-26% for $N191$) than radiometry measurements at the base of Cerro Chajnantor (5100 m alt.). The decrease in PWV can be explained by the altitude of the site when we assume that the vertical distribution of the water vapor is approximated at an exponential profile with scale heights within 0.3-1.9 km (previously observed values at night). We thus conclude that miniTAO/ANIR at the summit of Cerro Chajnantor indeed provides us an excellent capability for a ground-based Pa$alpha$ observation.



قيم البحث

اقرأ أيضاً

125 - T. Baug , D.K. Ojha , S.K. Ghosh 2018
TIFR Near Infrared Imaging Camera-II is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512 x 512 pixels InSb Aladdin III Quadrant focal plane array having sensitivity to photons in the 1-5 microns wavelength band. In this p aper, we present the performance of the camera on the newly installed 3.6-m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view of ~86.5 arcsec x 86.5 arcsec on the DOT with a pixel scale of 0.169 arcsec. The seeing at the telescope site in the near-infrared bands is typically sub-arcsecond with the best seeing of ~0.45 arcsec realized in the near-infrared K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4-m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4 microns) magnitudes of 9.2 in the narrow L-band (nbL; lambda_{cen} ~3.59 microns). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera ([3.6] <= 7.92 mag) and the WISE W1-band ([3.4] <= 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3 microns are also detected. Details of the observations and estimated parameters are presented in this paper.
The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.2 $times$ 2.2 fields of view that are capable of either imaging or spectroscopic observations. Either of two $R sim 1500$ grisms with orthogonal dispersion directions can be used for slitless spectroscopy over $lambda = 2.4 - 5.0$ $mu$m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 -- 2.3 $mu$m) imaging observations of the 2.4 -- 5.0 $mu$m spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 -- 2.0 $mu$m spectroscopy (simultaneously with 2.4 -- 5.0 $mu$m) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, weak lenses, and DHS elements were included in NIRCam primarily for wavefront sensing purposes, but all have significant science applications. Operational considerations including subarray sizes, and data volume limits are also discussed. Finally, we describe spectral simulation tools and illustrate potential scientific uses of the grisms by presenting simulated observations of deep extragalactic fields, galactic dark clouds, and transiting exoplanets.
We present the detailed design of the near infrared camera for the SuMIRe (Subaru Measurement of Images and Redshifts) Prime Focus Spectrograph (PFS) being developed for the Subaru Telescope. The PFS spectrograph is designed to collect spectra from 2 394 objects simultaneously, covering wavelengths that extend from 380 nm - 1.26 um. The spectrograph is comprised of four identical spectrograph modules, with each module collecting roughly 600 spectra from a robotic fiber positioner at the telescope prime focus. Each spectrograph module will have two visible channels covering wavelength ranges 380 nm - 640 nm and 640 nm - 955 nm, and one near infrared (NIR) channel with a wavelength range 955 nm - 1.26 um. Dispersed light in each channel is imaged by a 300 mm focal length, f/1.07, vacuum Schmidt camera onto a 4k x 4k, 15 um pixel, detector format. For the NIR channel a HgCdTe substrate-removed Teledyne 1.7 um cutoff device is used. In the visible channels, CCDs from Hamamatsu are used. These cameras are large, having a clear aperture of 300 mm at the entrance window, and a mass of ~ 250 kg. Like the two visible channel cameras, the NIR camera contains just four optical elements: a two-element refractive corrector, a Mangin mirror, and a field flattening lens. This simple design produces very good imaging performance considering the wide field and wavelength range, and it does so in large part due to the use of a Mangin mirror (a lens with a reflecting rear surface) for the Schmidt primary. In the case of the NIR camera, the rear reflecting surface is a dichroic, which reflects in-band wavelengths and transmits wavelengths beyond 1.26 um. This, combined with a thermal rejection filter coating on the rear surface of the second corrector element, greatly reduces the out-of-band thermal radiation that reaches the detector.
91 - A. E. Nadjip 2017
ASTRONIRCAM is a cryogenic-cooled slit spectrograph for the spectral range 1-2.5 mkm installed at the Nasmyth focus of the 2.5-meter telescope of the Caucasian observatory of Sternberg Astronomical Institute of Lomonosov Moscow State University. The instrument is equipped with the HAWAII-2RG 2048x2048 HgCdTe array. Grisms are used as dispersive elements. In the photometric mode ASTRONIRCAM allows for extended astronomical object imaging in the field of view of 4.6x4.6 arc minutes with the 0.269 arcsec/pixel scale in standard photometric bands J, H, K and Ks as well as in narrow-band filters CH_4, [Fe II], H_2 v=1-0 S(1), Br_gamma and CO. In the spectroscopic mode, ASTRONIRCAM takes spectra of extended or point-like sources with spectral resolution R=lambda/Delta lambda <= 1200. The general design, optical system, detector electronics and readout, amplification and digitization scheme are considered. The conversion factor GAIN measurement results are described as well as its dependence on the accumulated signal (non-linearity). The full transmission of the atmosphere-to-detector train ranges from 40 to 50% in the wide-band photometry mode. The ASTRONIRCAM sensitivity at the 2.5-m telescope is characterized by the limiting J=20, K=19 star magnitudes measured with the 10% precision and 15 minutes integration at the 1 arcsec atmospheric seeing conditions. The references to first results published on the base of ASTRONIRCAM observations are given.
In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24 hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا