ترغب بنشر مسار تعليمي؟ اضغط هنا

Made-to-Measure models of the Galactic Box/Peanut bulge: stellar and total mass in the bulge region

120   0   0.0 ( 0 )
 نشر من قبل Matthieu Portail
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Portail




اسأل ChatGPT حول البحث

We construct dynamical models of the Milky Ways Box/Peanut (B/P) bulge, using the recently measured 3D density of Red Clump Giants (RCGs) as well as kinematic data from the BRAVA survey. We match these data using the NMAGIC Made-to-Measure method, starting with N-body models for barred discs in different dark matter haloes. We determine the total mass in the bulge volume of the RCGs measurement (+-2.2 x +- 1.4 x +- 1.2 kpc) with unprecedented accuracy and robustness to be 1.84 +- 0.07 x10^10 Msun. The stellar mass in this volume varies between 1.25-1.6 x10^10 Msun, depending on the amount of dark matter in the bulge. We evaluate the mass-to-light and mass-to-clump ratios in the bulge and compare them to theoretical predictions from population synthesis models. We find a mass-to-light ratio in the K-band in the range 0.8-1.1. The models are consistent with a Kroupa or Chabrier IMF, but a Salpeter IMF is ruled out for stellar ages of 10 Gyr. To match predictions from the Zoccali IMF derived from the bulge stellar luminosity function requires about 40% or 0.7 x10^10 Msun dark matter in the bulge region. The BRAVA data together with the RCGs 3D density imply a low pattern speed for the Galactic B/P bulge of 25-30 km.s-1.kpc-1. This would place the Galaxy among the slow rotators (R >= 1.5). Finally, we show that the Milky Ways B/P bulge has an off-centred X structure, and that the stellar mass involved in the peanut shape accounts for at least 20% of the stellar mass of the bulge, significantly larger than previously thought.



قيم البحث

اقرأ أيضاً

We re-analyse photometric near-infrared data in order to investigate why it is so hard to get a consensus for the shape and density law of the bulge, as seen from the literature. To solve the problem we use the Besancon Galaxy Model to provide a sche me for parameter fitting of the structural characteristics of the bulge region. The fitting process allows the determination of the global shape of the bulge main structure. We explore various parameters and shape for the bulge/bar structure based on Ferrers ellipsoids and fit the shape of the inner disc in the same process. The results show that the main structure is a quite standard triaxial boxy bar/bulge with an orientation of about 13 degree with respect to the Sun-centre direction. But the fit is greatly improved when we add a second structure, which is a longer and thicker ellipsoid. We emphasize that our first ellipsoid represent the main boxy bar of the Galaxy, and that the thick bulge could be either a classical bulge slightly flattened by the effect of the bar potential, or a inner thick disc counterpart. We show that the double clump seen at intermediate latitudes can be reproduced by adding a slight flare to the bar. In order to better characterize the populations, we further simulate several fields which have been surveyed in spectroscopy and for which metallicity distribution function (MDF) are available. The model is in good agreement with these MDF along the minor axis if we assume that the main bar has a mean solar metallicity and the second thicker population has a lower metallicity. It then creates naturally a vertical metallicity gradient by the mixing of the two poulations. (abridged)
107 - M. Zoccali 2009
The Galactic bulge is the central spheroid of our Galaxy, containing about one quarter of the total stellar mass of the Milky Way (M_bulge=1.8x10^10 M_sun; Sofue, Honma & Omodaka 2009). Being older than the disk, it is the first massive component of the Galaxy to have collapsed into stars. Understanding its structure, and the properties of its stellar population, is therefore of great relevance for galaxy formation models. I will review our current knowledge of the bulge properties, with special emphasis on chemical abundances, recently measured for several hundred stars.
115 - Juntai Shen , Zhao-Yu Li 2015
Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disk and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disk plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.
105 - Ortwin Gerhard 2014
The Galactic bulge is now considered to be the inner three-dimensional part of the Milky Ways bar. It has a peanut shape and is characterized by cylindrical rotation. In N-body simulations, box/peanut bulges arise from disks through bar and buckling instabilities. Models of this kind explain much of the structure and kinematics of the Galactic bulge and, in principle, also its vertical metallicity gradient. Cosmological disk galaxy formation models with high resolution and improved feedback models are now able to generate late-type disk galaxies with disk-like or barred bulges. These bulges often contain an early collapse stellar population and a population driven by later disk instabilities. Due to the inside-out disk formation, these bulges can be predominantly old, similar to the Milky Way bulge.
109 - Carine Babusiaux 2012
Until recently our knowledge of the Galactic Bulge stellar populations was based on the study of a few low extinction windows. Large photometric and spectroscopic surveys are now underway to map large areas of the bulge. They probe several complex st ructures which are still to be fully characterized as well as their links with the inner disc, the thick disc and the inner halo. I will review our current, rapidly increasing, knowledge of the bulge stellar populations and the new insight expected towards the Gaia era to disentangle the formation history of the Galactic inner regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا