ترغب بنشر مسار تعليمي؟ اضغط هنا

Context Models For Web Search Personalization

320   0   0.0 ( 0 )
 نشر من قبل Maksims Volkovs
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Maksims Volkovs




اسأل ChatGPT حول البحث

We present our solution to the Yandex Personalized Web Search Challenge. The aim of this challenge was to use the historical search logs to personalize top-N document rankings for a set of test users. We used over 100 features extracted from user- and query-depended contexts to train neural net and tree-based learning-to-rank and regression models. Our final submission, which was a blend of several different models, achieved an NDCG@10 of 0.80476 and placed 4th amongst the 194 teams winning 3rd prize.



قيم البحث

اقرأ أيضاً

Product search serves as an important entry point for online shopping. In contrast to web search, the retrieved results in product search not only need to be relevant but also should satisfy customers preferences in order to elicit purchases. Previou s work has shown the efficacy of purchase history in personalized product search. However, customers with little or no purchase history do not benefit from personalized product search. Furthermore, preferences extracted from a customers purchase history are usually long-term and may not always align with her short-term interests. Hence, in this paper, we leverage clicks within a query session, as implicit feedback, to represent users hidden intents, which further act as the basis for re-ranking subsequent result pages for the query. It has been studied extensively to model user preference with implicit feedback in recommendation tasks. However, there has been little research on modeling users short-term interest in product search. We study whether short-term context could help promote users ideal item in the following result pages for a query. Furthermore, we propose an end-to-end context-aware embedding model which can capture long-term and short-term context dependencies. Our experimental results on the datasets collected from the search log of a commercial product search engine show that short-term context leads to much better performance compared with long-term and no context. Our results also show that our proposed model is more effective than word-based context-aware models.
Deep matching models aim to facilitate search engines retrieving more relevant documents by mapping queries and documents into semantic vectors in the first-stage retrieval. When leveraging BERT as the deep matching model, the attention score across two words are solely built upon local contextualized word embeddings. It lacks prior global knowledge to distinguish the importance of different words, which has been proved to play a critical role in information retrieval tasks. In addition to this, BERT only performs attention across sub-words tokens which weakens whole word attention representation. We propose a novel Global Weighted Self-Attention (GLOW) network for web document search. GLOW fuses global corpus statistics into the deep matching model. By adding prior weights into attention generation from global information, like BM25, GLOW successfully learns weighted attention scores jointly with query matrix $Q$ and key matrix $K$. We also present an efficient whole word weight sharing solution to bring prior whole word knowledge into sub-words level attention. It aids Transformer to learn whole word level attention. To make our models applicable to complicated web search scenarios, we introduce combined fields representation to accommodate documents with multiple fields even with variable number of instances. We demonstrate GLOW is more efficient to capture the topical and semantic representation both in queries and documents. Intrinsic evaluation and experiments conducted on public data sets reveal GLOW to be a general framework for document retrieve task. It significantly outperforms BERT and other competitive baselines by a large margin while retaining the same model complexity with BERT.
This paper presents GEneric iNtent Encoder (GEN Encoder) which learns a distributed representation space for user intent in search. Leveraging large scale user clicks from Bing search logs as weak supervision of user intent, GEN Encoder learns to map queries with shared clicks into similar embeddings end-to-end and then finetunes on multiple paraphrase tasks. Experimental results on an intrinsic evaluation task - query intent similarity modeling - demonstrate GEN Encoders robust and significant advantages over previous representation methods. Ablation studies reveal the crucial role of learning from implicit user feedback in representing user intent and the contributions of multi-task learning in representation generality. We also demonstrate that GEN Encoder alleviates the sparsity of tail search traffic and cuts down half of the unseen queries by using an efficient approximate nearest neighbor search to effectively identify previous queries with the same search intent. Finally, we demonstrate distances between GEN encodings reflect certain information seeking behaviors in search sessions.
This paper presents the first evaluation framework for Web search query segmentation based directly on IR performance. In the past, segmentation strategies were mainly validated against manual annotations. Our work shows that the goodness of a segmen tation algorithm as judged through evaluation against a handful of human annotated segmentations hardly reflects its effectiveness in an IR-based setup. In fact, state-of the-art algorithms are shown to perform as good as, and sometimes even better than human annotations -- a fact masked by previous validations. The proposed framework also provides us an objective understanding of the gap between the present best and the best possible segmentation algorithm. We draw these conclusions based on an extensive evaluation of six segmentation strategies, including three most recent algorithms, vis-a-vis segmentations from three human annotators. The evaluation framework also gives insights about which segments should be necessarily detected by an algorithm for achieving the best retrieval results. The meticulously constructed dataset used in our experiments has been made public for use by the research community.
Engineering a Web search engine offering effective and efficient information retrieval is a challenging task. This document presents our experiences from designing and developing a Web search engine offering a wide spectrum of functionalities and we report some interesting experimental results. A rather peculiar design choice of the engine is that its index is based on a DBMS, while some of the distinctive functionalities that are offered include advanced Greek language stemming, real time result clustering, and advanced link analysis techniques (also for spam page detection).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا