ﻻ يوجد ملخص باللغة العربية
From studying the time evolution of the single electron density matrix within a density functional tight-binding formalism we study in a fully atomistic picture the electronic excitation transfer between two photosynthetic pigments in real time. This time-dependent quantum dynamics is based on fully atomistic structural models of the photosynthetic pigment. We analyze the dependence of the electronic excitation transfer with distance and orientation between photosynthetic pigments. We compare the results obtained from full quantum dynamics with analytical ones, based on a two level system model were the interaction between the pigments is dipolar. We observed that even when the distance of the photosynthetic pigment is about $30$ AA the deviation of the dipolarity is of about $15$ percent.
There is a remarkable characteristic of photosynthesis in nature, that is, the energy transfer efficiency is close to 100%. Recently, due to the rapid progress made in the experimental techniques, quantum coherent effects have been experimentally dem
In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and it has been suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning t
The electronic and nuclear dynamics in methanol, following 156~nm photoexcitation, are investigated by combining a detailed analysis of time-resolved photoelectron spectroscopy experiments with electronic structure calculations. The photoexcitation p
The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the e
Recently, nuclear vibrational contribution signatures in 2D electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients h