ﻻ يوجد ملخص باللغة العربية
In this note we prove the following law of the iterated logarithm for the Grenander estimator of a monotone decreasing density: If $f(t_0) > 0$, $f(t_0) < 0$, and $f$ is continuous in a neighborhood of $t_0$, then begin{eqnarray*} limsup_{nrightarrow infty} left ( frac{n}{2log log n} right )^{1/3} ( widehat{f}_n (t_0 ) - f(t_0) ) = left| f(t_0) f(t_0)/2 right|^{1/3} 2M end{eqnarray*} almost surely where $ M equiv sup_{g in {cal G}} T_g = (3/4)^{1/3}$ and $ T_g equiv mbox{argmax}_u { g(u) - u^2 } $; here ${cal G}$ is the two-sided Strassen limit set on $R$. The proof relies on laws of the iterated logarithm for local empirical processes, Groenebooms switching relation, and properties of Strassens limit set analogous to distributional properties of Brownian motion.
We present a general law of the iterated logarithm for stochastic processes on the open unit interval having subexponential tails in a locally uniform fashion. It applies to standard Brownian bridge but also to suitably standardized empirical distrib
We study the law of the iterated logarithm (LIL) for the maximum likelihood estimation of the parameters (as a convex optimization problem) in the generalized linear models with independent or weakly dependent ($rho$-mixing, $m$-dependent) responses
We propose a censored quantile regression estimator motivated by unbiased estimating equations. Under the usual conditional independence assumption of the survival time and the censoring time given the covariates, we show that the proposed estimator
We prove the consistency of the Power-Law Fit PLFit method proposed by Clauset et al.(2009) to estimate the power-law exponent in data coming from a distribution function with regularly-varying tail. In the complex systems community, PLFit has emerge
We present theoretical properties of the log-concave maximum likelihood estimator of a density based on an independent and identically distributed sample in $mathbb{R}^d$. Our study covers both the case where the true underlying density is log-concav