ﻻ يوجد ملخص باللغة العربية
Compared with the semiconductors such as silicon and gallium arsenide which have been used widely for decades, semimetals have not received much attention in the field of condensed matter physics until very recently. The realization of electronic topological properties has motivated interest of investigations on Dirac semimetals and Weyl semimetals, which are predicted to show unprecedented features beyond the classical electronic theories of metals. In this letter for the first time we report the electric transport properties of a robust Weyl semimetal candidate proposed by recent theoretical calculations, TaAs. Our study shows that this bulk material manifests ultrahigh carrier mobility ($mathrm{5times10^5 cm^2/Vcdot{s}}$) accompanied by an extremely large, unsaturated linear magnetoresistance ($mathrm{MR}$), which reaches 5400 at 10 Kelvins in a magnetic field of 9 Teslas and 2.47$times$10$^4$ at 1.5 Kelvins in a magnetic field of 56 Teslas. We also observed strong Shubnikov-de Haas (SdH) oscillations associated with an extremely low quantum limit ($sim$8 Teslas). Further studies on TaAs, especially in the ultraquantum limit regime, will help to extend the realization of the topological properties of these exotic electrons.
We show that the charge and thermal transport measurements on ultraclean crystals of URu2Si2 reveal a number of unprecedented superconducting properties. The uniqueness is best highlighted by the peculiar field dependence of thermal conductivity incl
We report a topological semimetal W2As3 with a space group C2/m. Based on the first-principles calculations, band crossings are partially gapped when spin-orbit coupling is included. The Z2 indices at the electron filling are [1;111], characterizing
By combining angle-resolved photoemission spectroscopy and quantum oscillation measurements, we performed a comprehensive investigation on the electronic structure of LaSb, which exhibits near-quadratic extremely large magnetoresistance (XMR) without
Superconducting Tunnel Junctions (STJs) are currently being developed as photon detectors for a wide range of applications. Interest comes from their ability to cumulate photon counting with chromaticity (i.e. energy resolution) from the near infrare
The interconnect half-pitch size will reach ~20 nm in the coming sub-5 nm technology node. Meanwhile, the TaN/Ta (barrier/liner) bilayer stack has to be > 4 nm to ensure acceptable liner and diffusion barrier properties. Since TaN/Ta occupy a signifi