ﻻ يوجد ملخص باللغة العربية
In previous work carried out in the setting of program algebra, including work in the area of instruction sequence size complexity, we chose instruction sets for Boolean registers that contain only instructions of a few of the possible kinds. In the current paper, we study instruction sequence size bounded functional completeness of all possible instruction sets for Boolean registers. We expect that the results of this study will turn out to be useful to adequately assess results of work that is concerned with lower bounds of instruction sequence size complexity.
A parameterized algebraic theory of instruction sequences, objects that represent the behaviours produced by instruction sequences under execution, and objects that represent the behaviours exhibited by the components of the execution environment of
The number of instructions of an instruction sequence is taken for its logical SLOC, and is abbreviated with LLOC. A notion of quantitative expressiveness is based on LLOC and in the special case of operation over a family of single bit registers a c
We present SLinGen, a program generation system for linear algebra. The input to SLinGen is an application expressed mathematically in a linear-algebra-inspired language (LA) that we define. LA provides basic scalar/vector/matrix additions/multiplica