ﻻ يوجد ملخص باللغة العربية
We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter, alpha, larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed as alpha > sqrt{H/3r} for H/r ~<0.1, where H is the disk scale height. If alpha < sqrt{H/3r}, only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: For the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ~10^{-2} pc for 10^7 Msun black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.
We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiati
It is usually thought that viscous torque works to align a circumbinary disk with the binarys orbital plane. However, recent numerical simulations suggest that the disk may evolve to a configuration perpendicular to the binary orbit (polar alignment)
We examine the light curves of two quasars, motivated by recent suggestions that a supermassive black hole binary (SMBHB) can exhibit sharp lensing spikes. We model the variability of each light curve as due to a combination of two relativistic effec
In this paper, we explore the mechanisms that regulate the formation and evolution of stellar black hole binaries (BHBs) around supermassive black holes (SMBHs). We show that dynamical interactions can efficiently drive in-situ BHB formation if the S
The new generation of VLTI instruments (GRAVITY, MATISSE) aims to produce routinely interferometric images to uncover the morphological complexity of different objects at high angular resolution. Image reconstruction is, however, not a fully automate