ﻻ يوجد ملخص باللغة العربية
Stellar dynamo processes can be explored by measuring the magnetic field. This is usually obtained using the atomic and molecular Zeeman effect in spectral lines. While the atomic Zeeman effect can only access warmer regions, the use of molecular lines is of advantage for studying cool objects. The molecules MgH, TiO, CaH, and FeH are suited to probe stellar magnetic fields, each one for a different range of spectral types, by considering the signal that is obtained from modeling various spectral types. We have analyzed the usefulness of different molecules (MgH, TiO, CaH, and FeH) as diagnostic tools for studying stellar magnetism on active G-K-M dwarfs. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and present synthetic Stokes profiles for the modeled spectral type. We modeled a star with a spot size of 10% of the stellar disk and a spot comprising either only longitudinal or only transverse magnetic fields and estimated the strengths of the polarization Stokes V and Q signals for the molecules MgH, TiO, CaH, and FeH. We combined various photosphere and spot models according to realistic scenarios. In G dwarfs, the molecules MgH and FeH show overall the strongest Stokes V and Q signals from the starspot, whereas FeH has a stronger Stokes V signal in all G dwarfs, with a spot temperature of 3800K. In K dwarfs, CaH signals are generally stronger, and the TiO signature is most prominent in M dwarfs. Modeling synthetic polarization signals from starspots for a range of G-K-M dwarfs leads to differences in the prominence of various molecular signatures in different wavelength regions, which helps to efficiently select targets and exposure times for observations.
We explore a method for metallicity determinations based on quantitative spectroscopy of type II-Plateau (II-P) supernovae (SNe). For consistency, we first evolve a set of 15Msun main sequence stars at 0.1, 0.4, 1, and 2 x the solar metallicity. At t
Rapid rotation enhances the dynamo operating in stars, and thus also introducessignificantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar
More than half of the dust and heavy element enrichment in galaxies originates from the winds and outflows of evolved, low-to-intermediate mass stars on the asymptotic giant branch (AGB). However, numerous details of the physics of late-stage stellar
Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However ther
We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new VLT-KMOS instrument. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = -0.52 $pm$