ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecfit: A general tool for telluric absorption correction II. Quantitative evaluation on ESO-VLT X-Shooter spectra

170   0   0.0 ( 0 )
 نشر من قبل Wolfgang Kausch
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Absorption by molecules in the Earths atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)



قيم البحث

اقرأ أيضاً

271 - A. Smette , H. Sana , S. Noll 2015
Context: The interaction of the light from astronomical objects with the constituents of the Earths atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims: We present molecfit, a tool for correcting for telluric absorption lines based on synthetic modelling of the Earths atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods: Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatorys climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results: Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusion: Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. (Abridged)
113 - W. Kausch , S. Noll , A. Smette 2014
Correcting for the sky signature usually requires supplementary calibration data which are very expensive in terms of telescope time. In addition, the scheduling flexibility is restricted as these data have to be taken usually directly before/after t he science observations due to the high variability of the telluric absorption which depends on the state and the chemical composition of the atmosphere at the time of observations. Therefore, a tool for sky correction, which does not require this supplementary calibration data, saves a significant amount of valuable telescope time and increases its efficiency. We developed a software package aimed at performing telluric feature corrections on the basis of synthetic absorption spectra.
We report a method of correcting a near-infrared (0.90-1.35 $mu$m) high-resolution ($lambda/Deltalambdasim28,000$) spectrum for telluric absorption using the corresponding spectrum of a telluric standard star. The proposed method uses an A0,V star or its analog as a standard star from which on the order of 100 intrinsic stellar lines are carefully removed with the help of a reference synthetic telluric spectrum. We find that this method can also be applied to feature-rich objects having spectra with heavily blended intrinsic stellar and telluric lines and present an application to a G-type giant using this approach. We also develop a new diagnostic method for evaluating the accuracy of telluric correction and use it to demonstrate that our method achieves an accuracy better than 2% for spectral parts for which the atmospheric transmittance is as low as $sim$20% if telluric standard stars are observed under the following conditions: (1) the difference in airmass between the target and the standard is $lesssim 0.05$; and (2) that in time is less than 1 h. In particular, the time variability of water vapor has a large impact on the accuracy of telluric correction and minimizing the difference in time from that of the telluric standard star is important especially in near-infrared high-resolution spectroscopic observation.
X-shooter is one of the most popular instruments at the VLT, offering instantaneous spectroscopy from 300 to 2500 nm. We present the design of a single polarimetric unit at the polarization-free Cassegrain focus that serves all three spectrograph arm s of X-shooter. It consists of a calcite Savart plate as a polarizing beam-splitter and a rotatable crystal retarder stack as a polychromatic modulator. Since even superachromatic wave plates have a wavelength range that is too limited for X-shooter, this novel modulator is designed to offer close-to-optimal polarimetric efficiencies for all Stokes parameters at all wavelengths. We analyze the modulator design in terms of its polarimetric performance, its temperature sensitivity, and its polarized fringes. Furthermore, we present the optical design of the polarimetric unit. The X-shooter polarimeter will furnish a myriad of science cases: from measuring stellar magnetic fields (e.g., Ap stars, white dwarfs, massive stars) to determining asymmetric structures around young stars and in supernova explosions.
METIS is a mid-infrared instrument proposed for the European Extremely Large Telescope (E-ELT). It is designed to provide imaging and spectroscopic capabilities in the 3 - 14 micron region up to a spectral resolution of 100000. One of the novel conce pts of METIS is that of a high-resolution integral field spectrograph (IFS) for a diffraction-limited mid-IR instrument. While this concept has many scientific and operational advantages over a long-slit spectrograph, one drawback is that the spectral resolution changes over the field of view. This has an impact on the procedures to correct for telluric absorption lines imprinted on the science spectra. They are a major obstacle in the quest to maximize spectral fidelity, the ability to distinguish a weak spectral feature from the continuum. The classical technique of division by a standard star spectrum, observed in a single IFS spaxel, cannot simply be applied to all spaxels, because the spectral resolution changes from spaxel to spaxel. Here we present and discuss possible techniques of telluric line correction of METIS IFS spectra, including the application of synthetic model spectra of telluric transmission, to maximize spectral fidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا