ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of symmetry-protected topological phases in polymerized models by trajectories of Majorana stars

123   0   0.0 ( 0 )
 نشر من قبل Shu Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using Majoranas stellar representation, we give a clear geometrical interpretation of the topological phases of inversion-symmetric polymerized models by mapping the Bloch states of multi-band systems to Majorana stars on the Bloch sphere. While trajectories of Majorana stars of a filled Bloch band exhibit quite different geometrical structures for topologically trivial and nontrivial phases, we further demonstrate that these structures are uniquely determined by distributions of Majorana stars of two high-symmetrical momentum states, which have different parities for topologically different states.



قيم البحث

اقرأ أيضاً

We use low-depth quantum circuits, a specific type of tensor networks, to classify two-dimensional symmetry-protected topological many-body localized phases. For (anti-)unitary on-site symmetries we show that the (generalized) third cohomology class of the symmetry group is a topological invariant; however our approach leaves room for the existence of additional topological indices. We argue that our classification applies to quasi-periodic systems in two dimensions and systems with true random disorder within times which scale superexponentially with the inverse interaction strength. Our technique might be adapted to supply arguments suggesting the same classification for two-dimensional symmetry-protected topological ground states with a rigorous proof.
94 - Thorsten B. Wahl 2017
We prove that all eigenstates of many-body localized symmetry protected topological systems with time reversal symmetry have four-fold degenerate entanglement spectra in the thermodynamic limit. To that end, we employ unitary quantum circuits where t he number of sites the gates act on grows linearly with the system size. We find that the corresponding matrix product operator representation has similar local symmetries as matrix product ground states of symmetry protected topological phases. Those local symmetries give rise to a $mathbb{Z}_2$ topological index, which is robust against arbitrary perturbations so long as they do not break time reversal symmetry or drive the system out of the fully many-body localized phase.
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demons trate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
Abelian Chern-Simons theory, characterized by the so-called $K$ matrix, has been quite successful in characterizing and classifying Abelian fractional quantum hall effect (FQHE) as well as symmetry protected topological (SPT) phases, especially for b osonic SPT phases. However, there are still some puzzles in dealing with fermionic SPT(fSPT) phases. In this paper, we utilize the Abelian Chern-Simons theory to study the fSPT phases protected by arbitrary Abelian total symmetry $G_f$. Comparing to the bosonic SPT phases, fSPT phases with Abelian total symmetry $G_f$ has three new features: (1) it may support gapless majorana fermion edge modes, (2) some nontrivial bosonic SPT phases may be trivialized if $G_f$ is a nontrivial extention of bosonic symmetry $G_b$ over $mathbb{Z}_2^f$, (3) certain intrinsic fSPT phases can only be realized in interacting fermionic system. We obtain edge theories for various fSPT phases, which can also be regarded as conformal field theories (CFT) with proper symmetry anomaly. In particular, we discover the construction of Luttinger liquid edge theories with central charge $n-1$ for Type-III bosonic SPT phases protected by $(mathbb{Z}_n)^3$ symmetry and the Luttinger liquid edge theories for intrinsically interacting fSPT protected by unitary Abelian symmetry. The ideas and methods used here might be generalized to derive the edge theories of fSPT phases with arbitrary unitary finite Abelian total symmetry $G_f$.
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many inter esting phenomena, most notably topological insulators and the Haldane phase of quantum magnets. Here, we demonstrate that such TRS-protected effects are fundamentally unstable against coupling to an environment. Irrespective of the microscopic symmetries, interactions between a quantum system and its surroundings facilitate processes which would be forbidden by TRS in an isolated system. This leads not only to entanglement entropy production and the emergence of macroscopic irreversibility, but also to the demise of TRS-protected phenomena, including those associated with certain symmetry-protected topological phases. Our results highlight the enigmatic nature of TRS in quantum mechanics, and elucidate potential challenges in utilising topological systems for quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا