ﻻ يوجد ملخص باللغة العربية
The treatment of hypercubic lattice artifacts is essential for the calculation of non-perturbative renormalization constants of RI-MOM schemes. It has been shown that for the RI-MOM scheme a large part of these artifacts can be calculated and subtracted with the help of diagrammatic Lattice Perturbation Theory (LPT). Such calculations are typically restricted to 1-loop order, but one may overcome this limitation and calculate hypercubic corrections for any operator and action beyond the 1-loop order using Numerical Stochastic Perturbation Theory (NSPT). In this study, we explore the practicability of such an approach and consider, as a first test, the case of Wilson fermion bilinear operators in a quenched theory. Our results allow us to compare boosted and unboosted perturbative corrections up to the 3-loop order.
This note presents a comparative study of various options to reduce the errors coming from the discretization of a Quantum Field Theory in a lattice with hypercubic symmetry. We show that it is possible to perform an extrapolation towards the continu
Lectures given at the Summer School on Modern perspectives in lattice QCD, Les Houches, August 3-28, 2009
By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a
The subtraction of hypercubic lattice corrections, calculated at 1-loop order in lattice perturbation theory (LPT), is common practice, e.g., for determinations of renormalization constants in lattice hadron physics. Providing such corrections beyond
The determination of renormalization factors is of crucial importance. They relate the observables obtained on finite, discrete lattices to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be