ﻻ يوجد ملخص باللغة العربية
The Structure Theorem for Hopf modules states that if a bialgebra $H$ is a Hopf algebra (i.e. it is endowed with a so-called antipode) then every Hopf module $M$ is of the form ${M}^{mathrm{co}{H}}otimes H$, where ${M}^{mathrm{co}{H}}$ denotes the space of coinvariant elements in $M$. Actually, it has been shown that this result characterizes Hopf algebras: $H$ is a Hopf algebra if and only if every Hopf module $M$ can be decomposed in such a way. The main aim of this paper is to extend this characterization to the framework of quasi-bialgebras by introducing the notion of preantipode and by proving a Structure Theorem for quasi-Hopf bimodules. We will also establish the uniqueness of the preantipode and the closure of the family of quasi-bialgebras with preantipode under gauge transformation. Then, we will prove that every Hopf and quasi-Hopf algebra (i.e. a quasi-bialgebra with quasi-antipode) admits a preantipode and we will show how some previous results, as the Structure Theorem for Hopf modules, the Hausser-Nill theorem and the Bulacu-Caenepeel theorem for quasi-Hopf algebras, can be deduced from our Structure Theorem. Furthermore, we will investigate the relationship between the preantipode and the quasi-antipode and we will study a number of cases in which the two notions are equivalent: ordinary bialgebras endowed with trivial reassociator, commutative quasi-bialgebras, finite-dimensional quasi-bialgebras.
We show that a Jordan-Holder theorem holds for appropriately defined composition series of finite dimensional Hopf algebras. This answers an open question of N. Andruskiewitsch. In the course of our proof we establish analogues of the Noether isomorp
We introduce a new filtration on Hopf algebras, the standard filtration, generalizing the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated by the coradical. We give a structure theorem: any Hopf algebra wi
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that
We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfeld twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability o
Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide