ترغب بنشر مسار تعليمي؟ اضغط هنا

Tapering studies for Terawatt level X-ray FELs with a superconducting undulator

163   0   0.0 ( 0 )
 نشر من قبل Claudio Emma
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the tapering optimization scheme for a short period, less than two cm, superconducting undulator, and show that it can generate 4 keV X-ray pulses with peak power in excess of 1 terawatt, using LCLS electron beam parameters. We study the effect of undulator module length relative to the FEL gain length for continous and step-wise taper profiles. For the optimal section length of 1.5m we study the evolution of the FEL process for two different superconducting technologies NbTi and Nb3Sn. We discuss the major factors limiting the maximum output power, particle detrapping around the saturation location and time dependent detrapping due to generation and amplification of sideband modes.



قيم البحث

اقرأ أيضاً

The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mis match between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 AA) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a short-period undulator.
Free Electron Lasers (FEL) are commonly regarded as the potential key application of laser wakefield accelerators (LWFA). It has been found that electron bunches exiting from state-of-the-art LWFAs exhibit a normalized 6-dimensional beam brightness c omparable to those in conventional linear accelerators. Effectively exploiting this beneficial beam property for LWFA-based FELs is challenging due to the extreme initial conditions particularly in terms of beam divergence and energy spread. Several different approaches for capturing, reshaping and matching LWFA beams to suited undulators, such as bunch decompression or transverse-gradient undulator schemes, are currently being explored. In this article the transverse gradient undulator concept will be discussed with a focus on recent experimental achievements.
A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually-varied spacing current enhanc ement of the electron beam and a series of spatiotemporal shifters are applied between the undulator sections to amplify a chosen ultra-short radiation pulse from self-amplified spontaneous emission. Three-dimensional start-to-end simulations have been carried out and the calculation results demonstrated that 0.15 nm x-ray pulses with peak power over 1TW and duration of several tens of attoseconds could be achieved by using the proposed technique.
Short period, high field undulators are used to produce hard X-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength Free Electron Laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B, which is generally employed for undulators, avoids the limitation caused by the Spin Reorientation Transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.
177 - T. Hezel , B. Krevet , H. O. Moser 1997
During the last years several attempts were undertaken to decrease the period length of undulators to the mm range. In this paper, a novel type of an in-vacuum undulator is described which is built with superconductive wires. The period length of thi s special device is 3.8 mm. In principle, it is possible to decrease this period length even further. A 100 period long undulator has been built and will be tested with beam in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا