ﻻ يوجد ملخص باللغة العربية
Phases of matter are conventionally characterized by order parameters describing the type and degree of order in a system. For example, crystals consist of spatially ordered arrays of atoms, an order that is lost as the crystal melts. Like- wise in ferromagnets, the magnetic moments of the constituent particles align only below the Curie temperature, TC. These two examples reflect two classes of phase transitions: the melting of a crystal is a first-order phase transition (the crystalline order vanishes abruptly) and the onset of magnetism is a second- order phase transition (the magnetization increases continuously from zero as the temperature falls below TC). Such magnetism is robust in systems with localized magnetic particles, and yet rare in model itinerant systems where the particles are free to move about. Here for the first time, we explore the itinerant magnetic phases present in a spin-1 spin-orbit coupled atomic Bose gas; in this system, itinerant ferromagnetic order is stabilized by the spin-orbit coupling, vanishing in its absence. We first located a second-order phase transition that continuously stiffens until, at a tricritical point, it transforms into a first- order transition (with observed width as small as h x 4 Hz). We then studied the long-lived metastable states associated with the first-order transition. These measurements are all in agreement with theory.
Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap, density modulations with periodicity given by th
We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit coupled Bose gases. It is found that the SU(3) spin-orb
We study beyond-mean-field properties of interacting spin-1 Bose gases with synthetic Rashba-Dresselhaus spin-orbit coupling at low energies. We derive a many-body Hamiltonian following a tight-binding approximation in quasi-momentum space, where the
We present two Diffusion Monte Carlo (DMC) algorithms for systems of ultracold quantum gases featuring synthetic spin-orbit interactions. The first one is a discrete spin generalization of the T- moves spin-orbit DMC, which provides an upper bound to
A spin-orbit coupled two-dimensional (2D) Bose gas is shown to simultaneously possess quasi and true long-range order in the total and relative phase sectors, respectively. The total phase undergoes a Berenzinskii- Kosterlitz-Thouless transition to a