ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmions with low binding energies

186   0   0.0 ( 0 )
 نشر من قبل Derek Harland
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansatze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.



قيم البحث

اقرأ أيضاً

We consider gauged skyrmions with boundary conditions which break the gauge from $mathrm{SU}(2)$ to $mathrm{U}(1)$ in models derived from Yang-Mills theory. After deriving general topological energy bounds, we approximate charge $1$ energy minimisers using KvBLL calorons with non-trivial asymptotic holonomy, use them to calibrate the model to optimise the ratio of energy to lower bound, and compare them with solutions to full numerical simulation. Skyrmions from calorons with non-trivial asymptotic holonomy exhibit a non-zero magnetic dipole moment, which we calculate explicitly, and compare with experimental values for the proton and the neutron. We thus propose a way to develop a physically realistic Skyrme-Maxwell theory, with the potential for exhibiting low binding energies.
148 - Mareike Haberichter 2014
In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a nonlinear field theory of pions. The mass number is given by the conserved topological charge $B$ of the solitons. Conventionally, Skyrmions are semiclassically quanti zed within the rigid body approach. In this approach Skyrmions are effectively treated as rigid rotors in space and isospace that is it is assumed that Skyrmions do not deform at all when they spin and isospin. This approximation resulted in qualitative and encouraging quantitative agreement with experimental nuclear physics data. In this talk, we point out that the theoretical agreement could be further improved by allowing classical Skyrmion solutions to deform as they spin and isospin. As a first step towards a better understanding of how nuclei can be approximated by classically spinning and isospinning soliton solutions, we study how classical Skyrmion solutions of topological charges $B=1-4,8$ deform when classical isospin is added.
We consider the rigid body quantization of Skyrmions with topological charges 1 to 8, as approximated by the rational map ansatz. Novel, general expressions for the elements of the inertia tensors, in terms of the approximating rational map, are pres ented and are used to determine the kinetic energy contribution to the total energy of the ground and excited states of the quantized Skyrmions. Our results are compared to the experimentally determined energy levels of the corresponding nuclei, and the energies and spins of a few as yet unobserved states are predicted.
We compute the nuclear spin-orbit coupling from the Skyrme model. Previous attempts to do this were based on the product ansatz, and as such were limited to a system of two well-separated nuclei. Our calculation utilises a new method, and is applicab le to the phenomenologically important situation of a single nucleon orbiting a large nucleus. We find that, to second order in perturbation theory, the coefficient of the spin-orbit coupling induced by pion field interactions has the wrong sign, but as the strength of the pion-nucleon interactions increases the correct sign is recovered non-perturbatively.
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertai nty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا